我們定義一種新函數(shù):形如y=|ax2+bx+c|(a≠0,b2-4ac>0)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫出下列五個結(jié)論:其中正確結(jié)論的個數(shù)是( ?。?br />①圖象與坐標(biāo)軸的交點(diǎn)為(-1,0),(3,0)和(0,3);
②圖象具有對稱性,對稱軸是直線x=1;
③當(dāng)-1≤x≤1或x≥3時(shí),函數(shù)值y隨x值的增大而增大;
④當(dāng)x=-1或x=3時(shí),函數(shù)的最小值是0;
⑤當(dāng)x=1時(shí),函數(shù)的最大值是4,
【答案】A
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:650引用:25難度:0.5
相似題
-
1.已知二次函數(shù)y=x2-mx+m-2:
(1)求證:不論m為任何實(shí)數(shù),此二次函數(shù)的圖象與x軸都有兩個交點(diǎn);
(2)當(dāng)二次函數(shù)的圖象經(jīng)過點(diǎn)(3,6)時(shí),確定m的值,并寫出此二次函數(shù)與坐標(biāo)軸的交點(diǎn)坐標(biāo).發(fā)布:2025/6/24 17:0:1組卷:1313引用:11難度:0.7 -
2.二次函數(shù)y=2x2-2x+m(0<m<
),如果當(dāng)x=a時(shí),y<0,那么當(dāng)x=a-1時(shí),函數(shù)值y的取值范圍為( ?。?/h2>12發(fā)布:2025/6/25 5:30:3組卷:143引用:2難度:0.7 -
3.拋物線y=x2-2x+1與坐標(biāo)軸交點(diǎn)個數(shù)為( ?。?/h2>
發(fā)布:2025/6/24 17:30:1組卷:1076引用:22難度:0.9