性質(zhì)探究
如圖(1),在等腰三角形ABC中,∠ACB=120°,則底邊AB與腰AC的長度之比為3:13:1.
理解運用
(1)若頂角為120°的等腰三角形的周長為4+23,則它的面積為33;
(2)如圖(2),在四邊形EFGH中,EF=EG=EH,在邊FG,GH上分別取中點M,N,連接MN.若∠FGH=120°,EF=20,求線段MN的長.
類比拓展
頂角為2α的等腰三角形的底邊與一腰的長度之比為2sinα:12sinα:1.(用含α的式子表示)

3
3
3
3
3
【考點】三角形綜合題.
【答案】:1;;2sinα:1
3
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 21:30:1組卷:821引用:4難度:0.2
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發(fā)沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設(shè)點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數(shù)式表示)
(2)當(dāng)△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設(shè)△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關(guān)系式.發(fā)布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發(fā),均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式.
(2)當(dāng)點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當(dāng)點P.Q運動時,線段DE的長度是否改變?證明你的結(jié)論.發(fā)布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發(fā),當(dāng)點P到達A點時,P,Q兩點同時停止運動.設(shè)點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應(yīng)的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發(fā)布:2025/6/25 5:0:1組卷:191引用:3難度:0.4
相關(guān)試卷