阿波羅尼斯是古希臘著名數(shù)學家,與阿基米德、歐幾里得并稱為亞歷山大時期數(shù)學三巨匠,他研究發(fā)現(xiàn):如果一個動點P到兩個定點的距離之比為常數(shù)λ(λ>0,且λ≠1),那么點P的軌跡為圓,這就是著名的阿波羅尼斯圓.若點C到A(-1,0),B(1,0)的距離之比為3,則點C到直線x-2y+8=0的距離的最小值為( ?。?/h1>
3
【考點】軌跡方程.
【答案】A
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:211引用:10難度:0.5
相似題
-
1.點P為△ABC所在平面內(nèi)的動點,滿足
=t(AP),t∈(0,+∞),則點P的軌跡通過△ABC的( ?。?/h2>AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知兩個定點A(-2,0),B(1,0),如果動點P滿足|PA|=2|PB|.
(1)求點P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點P的軌跡和圓(x+2)2+(y-4)2=4都有公共點,求實數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:42引用:3難度:0.5 -
3.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點E為BC的中點.四棱錐P-ABCD的所有頂點都在同一個球面上,點M是該球面上的一動點,且PM⊥AE,則點M的軌跡的長度為( ?。?/h2>
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6
相關(guān)試卷