如圖1,在平面直角坐標系xOy中,已知拋物線y=-x2+bx+c經(jīng)過A(-1,0),B(3,0)兩點.P是拋物線上一點,且在直線BC的上方.

(1)求拋物線的解析式;
(2)如圖2,點E為OC中點,作PQ∥y軸交BC于點Q,若四邊形CPQE為平行四邊形,求點P的橫坐標;
(3)如圖3,連結AC、AP,AP交BC于點M,作PH∥AC交BC于點H.記△PHM,△PMC,△CAM的面積分別為S1,S2,S3.判斷S1S2+S2S3是否存在最大值.若存在,求出最大值;若不存在,請說明理由.
S
1
S
2
+
S
2
S
3
【考點】二次函數(shù)綜合題.
【答案】(1)拋物線的解析式為y=-x2+2x+3;
(2)P的橫坐標為或;
(3)存在最大值,最大值為.
(2)P的橫坐標為
3
+
3
2
3
-
3
2
(3)
S
1
S
2
+
S
2
S
3
9
8
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/23 6:0:2組卷:867引用:3難度:0.1
相似題
-
1.如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A,B兩點(點A在點B的左側),拋物線上另有一點C在第一象限,滿足∠ACB為直角,且使∠OCA=∠OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關系式;
(3)在拋物線的對稱軸上是否存在一點P,使得△BCP是以BC為腰的等腰三角形?若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.發(fā)布:2025/5/23 15:0:2組卷:500引用:1難度:0.2 -
2.已知拋物線y=ax2+bx+c(a≠0)的頂點D及與y軸的交點C都在直線y=x+1上,對稱軸是直線x=1.
(1)求拋物線的解析式;
(2)若在自變量x的值滿足t≤x≤t+2時,與其對應的函數(shù)值y的最小值為-7,求此時t的值;
(3)設m為拋物線與x軸一個交點的橫坐標,求的值.m8+m4-20m2+6m3+14m+6發(fā)布:2025/5/23 15:0:2組卷:431引用:1難度:0.4 -
3.如圖,對稱軸為直線x=1的拋物線y=x2-bx+c與x軸交于A(x1,0)、B(x2,0)(x1<x2)兩點,與y軸交于C點,且
+1x1=-1x2.23
(1)求拋物線的解析式;
(2)拋物線頂點為D,直線BD交y軸于E點;
①設點P為線段BD上一點(點P不與B、D兩點重合),過點P作x軸的垂線與拋物線交于點F,求△BDF面積的最大值;
②在線段BD上是否存在點Q,使得∠BDC=∠QCE?若存在,求出點Q的坐標;若不存在,請說明理由.發(fā)布:2025/5/23 15:30:2組卷:364引用:9難度:0.1