試卷征集
加入會員
操作視頻

如圖,拋物線y=-x2+bx+c與x軸分別交于A(-1,0),B(5,0)兩點.
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點C,作CD垂直x軸于點D,連接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個單位,當(dāng)點C落在拋物線上時,求m的值;
(3)在(2)的條件下,當(dāng)點C第一次落在拋物線上記為點E,點P是拋物線對稱軸上一點.試探究:在拋物線上是否存在點Q,使以點B、E、P、Q為頂點的四邊形是平行四邊形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/3 7:0:2組卷:4050引用:35難度:0.1
相似題
  • 1.在平面直角坐標(biāo)系中,O為原點,直線y=-2x-1與y軸交于點A,與直線y=-x交于點B,點B關(guān)于原點的對稱點為點C.
    (1)過A,B,C三點的拋物線的解析式為

    (2)P為拋物線上一點,它關(guān)于原點的對稱點為Q.
    ①當(dāng)四邊形PBQC為菱形時,求點P的坐標(biāo);
    ②若點P的橫坐標(biāo)為t(-1<t<1),當(dāng)t為何值時,四邊形PBQC面積最大,并說明理由.

    發(fā)布:2025/6/13 15:0:2組卷:117引用:1難度:0.3
  • 2.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標(biāo)為(3,0).點P是拋物線上一個動點,且在直線BC的上方.
    (1)求這個二次函數(shù)的表達(dá)式.
    (2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
    (3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時點P的坐標(biāo)和四邊形ABPC的最大面積.

    發(fā)布:2025/6/13 16:30:1組卷:1114引用:8難度:0.3
  • 3.如圖,拋物線y=ax2+bx+c交x軸于A(-1,0),B(3,0)兩點,交y軸于點C(0,-3),點P是拋物線第四象限內(nèi)的動點.

    (1)求拋物線的解析式;
    (2)過點P分別作x軸、y軸的垂線,垂足分別為點D和點E,當(dāng)四邊形PDOE是正方形時,求P的坐標(biāo);
    (3)連接AC、BC,過點P作PQ∥AC交線段BC于點Q,連接PA、PB、QA,記△PAQ與△PBQ面積分別為S1,S2,設(shè)S=S1+S2,求S的最大值.

    發(fā)布:2025/6/13 16:30:1組卷:299引用:1難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正