【觀察思考】(1)如圖1,四邊形ABCD是正方形,點E是邊AD的中點,∠BEF=90°,且EF交正方形外角的平分線DF于點F.猜想線段BE與EF的數(shù)量關(guān)系;
【探索發(fā)現(xiàn)】(2)如圖2,將(1)圖1中的“點E是邊AD的中點”改成“點E是邊AD(除A、D外)上任意一點”,其余條件不變,探究線段BE與EF的數(shù)量關(guān)系是否改變?請說明理由;
【變式遷移】(3)如圖3,將(1)圖1中的“點E是邊AD的中點”改成“點E是邊AD延長線上一點”,其余條件不變,若AB=4,DE=1.請直接寫出線段EF的長.

【考點】四邊形綜合題.
【答案】(1)BE=EF;理由見解答過程;
(2)BE=EF;理由見解答過程;
(3);理由見解答過程.
(2)BE=EF;理由見解答過程;
(3)
41
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/5/1 8:0:8組卷:23引用:2難度:0.1
相似題
-
1.在正方形ABCD中,E是邊CD上一點(點E不與點C、D重合),連接BE.
【感知】如圖①,過點A作AF⊥BE交BC于點F.易證△ABF≌△BCE.(不需要證明)
【探究】如圖②,取BE的中點M,過點M作FG⊥BE交BC于點F,交AD于點G.
(1)求證:BE=FG.
(2)連接CM,若CM=1,則FG的長為 .
【應用】如圖③,取BE的中點M,連接CM.過點C作CG⊥BE交AD于點G,連接EG、MG.若CM=3,則四邊形GMCE的面積為 .發(fā)布:2025/6/13 19:30:1組卷:4524引用:23難度:0.1 -
2.已知,如圖:在直角坐標系中,正方形AOBC的邊長為4,點D,E分別是線段AO,BO上的動點,D點由A點向O點運動,速度為每秒1個單位,E點由B點向O點運動,速度為每秒2個單位,當一個點停止運動時,另一個點也隨之停止,設(shè)運動時間為t(秒)
(1)如圖1,當t為何值時,△DOE的面積為6;
(2)如圖2,連接CD,與AE交于一點,當t為何值時,CD⊥AE;
(3)如圖3,過點D作DG∥OB,交BC于點G,連接EG,當D,E在運動過程中,能否使得點D,E,G三點構(gòu)成等腰三角形,如果能,請直接寫出t的值.發(fā)布:2025/6/13 20:30:1組卷:97引用:8難度:0.3 -
3.在矩形ABCD中,E是直線BC上一動點.
(1)如圖1,當BE=AB時,過點A作AP⊥DE于點P,連接BP,求∠BPE的度數(shù);
(2)如圖2,若F、G分別為AE、BC的中點,F(xiàn)G與ED相交于點H,求證:HE=HG;
(3)如圖3,若AB=BC,過點C作CH⊥AE,垂足為H,連接DH,若∠CDH=22.5°.則的值為 (直接寫出結(jié)果).CHAH發(fā)布:2025/6/13 21:0:2組卷:158引用:1難度:0.1
相關(guān)試卷