某企業(yè)擬投資A、B兩個(gè)項(xiàng)目,預(yù)計(jì)投資A項(xiàng)目m萬元可獲得利潤P=-180(m-20)2+105萬元;投資B項(xiàng)目n萬元可獲得利潤Q=-7980(40-n)2+592(40-n)萬元.若該企業(yè)用40萬元來投資這兩個(gè)項(xiàng)目,則分別投資多少萬元能獲得最大利潤?最大利潤是多少?
P
=
-
1
80
(
m
-
20
)
2
+
105
Q
=
-
79
80
+
59
2
【考點(diǎn)】函數(shù)最值的應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:17引用:5難度:0.5
相似題
-
1.若不等式(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x均成立,則實(shí)數(shù)a的取值范圍是( )
發(fā)布:2024/8/5 8:0:8組卷:971引用:20難度:0.7 -
2.求關(guān)于x的二次函數(shù)y=x2-2tx+1在-1≤x≤1上的最小值(t為常數(shù))
發(fā)布:2024/8/4 8:0:9組卷:29引用:3難度:0.7 -
3.對(duì)于函數(shù)y=f(x)(x∈I),y=g(x)(x∈I),若對(duì)于任意x∈I,存在x0,使得f(x)≥f(x0),g(x)≥g(x0)且f(x0)=g(x0),則稱f(x),g(x)為“兄弟函數(shù)”.已知函數(shù)
是定義在區(qū)間f(x)=x2+px+q(p,q∈R),g(x)=x2-x+1x上的“兄弟函數(shù)”,那么函數(shù)f(x)在區(qū)間x∈[12,2]上的最大值為( ?。?/h2>x∈[12,2]發(fā)布:2024/8/28 6:0:10組卷:351引用:15難度:0.7
把好題分享給你的好友吧~~