已知點P是圓C:x2+y2=1外一點,設(shè)k1,k2分別是過點P的圓C兩條切線的斜率.
(1)若點P坐標為(2,2),求k1?k2的值;
(2)若k1?k2=-λ(λ≠-1,0),求點P的軌跡M的方程,并指出曲線M所在圓錐曲線的類型.
【答案】(1)1;
(2)M的方程為:λx2+y2=λ+1(x≠±1);
若λ∈(-∞,-1)時,所在圓錐曲線M是焦點在x軸上的雙曲線;
若λ∈(-1,0)時,所在圓錐曲線M是焦點在y軸上的雙曲線;
若λ∈(0,1),M所在圓錐曲線M是焦點在x軸上的橢圓;
若λ=1時,M所在曲線M是圓;
若λ∈(1,+∞)時,所在圓錐曲線M是焦點在y軸上的橢圓.
(2)M的方程為:λx2+y2=λ+1(x≠±1);
若λ∈(-∞,-1)時,所在圓錐曲線M是焦點在x軸上的雙曲線;
若λ∈(-1,0)時,所在圓錐曲線M是焦點在y軸上的雙曲線;
若λ∈(0,1),M所在圓錐曲線M是焦點在x軸上的橢圓;
若λ=1時,M所在曲線M是圓;
若λ∈(1,+∞)時,所在圓錐曲線M是焦點在y軸上的橢圓.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:63引用:1難度:0.1