如圖,拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-3,0),點(diǎn)B(1,0),與y軸相交于點(diǎn)C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P是第二象限內(nèi)拋物線上一動(dòng)點(diǎn),連接AC,D是線段AC的中點(diǎn),連接AP,DP,求△APD面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)中,△APD面積的取最大值的條件下,將原拋物線沿射線AC的方向平移22個(gè)單位長度,得到新拋物線y1.點(diǎn)M為新拋物線y1對(duì)稱軸上一點(diǎn),點(diǎn)N為平面內(nèi)一點(diǎn),若以A,P,M,N為頂點(diǎn)的四邊形是矩形,直接寫出所有符合條件的點(diǎn)N的坐標(biāo),并選擇其中一個(gè)寫出求解過程.

2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)拋物線的函數(shù)表達(dá)式為y=-x2-2x+3;
(2)△APD面積的最大值是,此時(shí)點(diǎn)P的坐標(biāo)為(-,);
(3)N的坐標(biāo)為(-,-1)或(,).
(2)△APD面積的最大值是
27
16
3
2
15
4
(3)N的坐標(biāo)為(-
1
2
5
2
43
20
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:423引用:2難度:0.1
相似題
-
1.如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于C(0,3),DE所在的直線是該拋物線的對(duì)稱軸.
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)連接AD,P是AD上的動(dòng)點(diǎn),P′是點(diǎn)P關(guān)于DE的對(duì)稱點(diǎn),連接PE,過點(diǎn)P′作P′F∥PE,交x軸于點(diǎn)F,設(shè)四邊形PP′FE的面積為y,EF=x,求y與x之間的函數(shù)關(guān)系式.發(fā)布:2025/6/16 2:0:1組卷:231引用:2難度:0.3 -
2.如圖,拋物線y=ax2+bx+c與x軸交于原點(diǎn)O和點(diǎn)A,且其頂點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)坐標(biāo)為(2,1).
(1)求拋物線的函數(shù)表達(dá)式;
(2)拋物線的對(duì)稱軸上存在定點(diǎn)F,使得拋物線y=ax2+bx+c上的任意一點(diǎn)G到定點(diǎn)F的距離與點(diǎn)G到直線y=-2的距離總相等.
①證明上述結(jié)論并求出點(diǎn)F的坐標(biāo);
②過點(diǎn)F的直線l與拋物線y=ax2+bx+c交于M,N兩點(diǎn).
證明:當(dāng)直線l繞點(diǎn)F旋轉(zhuǎn)時(shí),+1MF是定值,并求出該定值;1NF
(3)點(diǎn)C(3,m)是該拋物線上的一點(diǎn),在x軸,y軸上分別找點(diǎn)P,Q,使四邊形PQBC周長最小,直接寫出P,Q的坐標(biāo).發(fā)布:2025/6/16 5:0:1組卷:2172引用:5難度:0.4 -
3.如圖,已知拋物線y=ax2+bx+5經(jīng)過A(-5,0),B(-4,-3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連接BD,CD.
(1)求該拋物線的表達(dá)式;
(2)判斷△BCD的形狀,并說明理由;
(3)若點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),該拋物線上是否存在點(diǎn)P,使得∠PBC=∠BCD?若存在,請(qǐng)直接寫出滿足條件的所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.發(fā)布:2025/6/16 5:30:3組卷:1379引用:2難度:0.1