如圖,已知拋物線y2=2px(p>0),焦點為F,準線為直線l,P為拋物線上的一點,過點P作l的垂線,垂足為點Q.當P的橫坐標為3時,△PQF為等邊三角形.
(1)求拋物線的方程;
(2)過點F的直線交拋物線于A,B兩點,交直線l于點M,交y軸于G.
①若MA=λ1AF,MB=λ2BF,求證:λ1+λ2為常數(shù);
②求GA?GB的取值范圍.
MA
=
λ
1
AF
MB
=
λ
2
BF
GA
?
GB
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:296引用:3難度:0.1
相似題
-
1.已知兩個定點坐標分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9 -
2.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標;若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
A.1 B.2 C.3 D.4 發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
把好題分享給你的好友吧~~