如圖:已知拋物線y=-x2+bx+c與y軸交于點(diǎn)B,與x軸分別交于點(diǎn)A、點(diǎn)C,直線y=12x+1與拋物線相交于點(diǎn)B、點(diǎn)D(1,32),已知點(diǎn)A坐標(biāo)是(-12,0),點(diǎn)P是拋物線上一動(dòng)點(diǎn).
(1)b,c的值;
(2)當(dāng)點(diǎn)P位于直線BD上方何處時(shí),△BPD面積最大?最大面積是多少?
(3)點(diǎn)M是直線BD上一動(dòng)點(diǎn),是否存在點(diǎn)M、點(diǎn)P使得四邊形ABMP恰好為平行四邊形?若存在,求出此時(shí)點(diǎn)M、點(diǎn)P的坐標(biāo).
y
=
1
2
x
+
1
D
(
1
,
3
2
)
(
-
1
2
,
0
)
【考點(diǎn)】直線與圓錐曲線的綜合;二次函數(shù)的性質(zhì)與圖象.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/3 8:0:9組卷:21引用:2難度:0.5
相似題
-
1.點(diǎn)P在以F1,F(xiàn)2為焦點(diǎn)的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點(diǎn).E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過(guò)點(diǎn)P作直線分別與雙曲線漸近線相交于P1,P2兩點(diǎn),且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過(guò)點(diǎn)Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且(λ為非零常數(shù)),問(wèn)在x軸上是否存在定點(diǎn)G,使MQ=λQN?若存在,求出所有這種定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:64引用:5難度:0.7 -
2.已知兩個(gè)定點(diǎn)坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點(diǎn)任意一點(diǎn)到兩定點(diǎn)的距離之差的絕對(duì)值等于2
.5
(1)求曲線C的方程;
(2)過(guò)F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點(diǎn),求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:84引用:1難度:0.9 -
3.若過(guò)點(diǎn)(0,-1)的直線l與拋物線y2=2x有且只有一個(gè)交點(diǎn),則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7
把好題分享給你的好友吧~~