我們給出如下定義:若一個四邊形中存在一組對邊的平方和等于另一組對邊的平方和,則稱這個四邊形為等平方和四邊形,
(1)寫出一個你所學(xué)過的特殊四邊形中是等平方和四邊形的圖形的名稱:菱形或正方形菱形或正方形,
(2)如圖(1),在梯形ABCD中,AD∥BC,AC⊥BD,垂足為O.求證:AD2+BC2=AB2+DC2,即四邊形ABCD是等平方和四邊形.

(3)如果將圖(1)中的△AOD繞點O按逆時針方向旋轉(zhuǎn)α度(0<α<90)后得到圖(2),那么四邊形ABCD能否成為等平方和四邊形?若能,請你證明;若不能,請說明理由.
【答案】菱形或正方形
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:400引用:5難度:0.1
相似題
-
1.某數(shù)學(xué)興趣小組開展了一次活動,過程如下:
設(shè)∠BAC=θ(0°<θ<90°)小棒依次擺放在兩射線之間,并使小棒兩端分別落在兩射線上.
活動一:
如圖甲所示,從點A1開始,依次向右擺放小棒,使小棒與小棒在端點處互相垂直,A1A2為第1根小棒.
數(shù)學(xué)思考:
(1)小棒能無限擺下去嗎?答:.(填“能“或“不能”)
(2)設(shè)AA1=A1A2=A2A3=1.
①θ=度;
②若記小棒A2n-1A2n的長度為an(n為正整數(shù),如A1A2=a1,A3A4=a2,…),求出此時a2,a3的值,并直接寫出an(用含n的式子表示).
活動二:
如圖乙所示,從點A1開始,用等長的小棒依次向右擺放,其中A1A2為第1根小棒,且A1A2=AA1.
數(shù)學(xué)思考:
(3)若已經(jīng)向右擺放了3根小棒,則θ1=,θ2=,θ3=(用含θ的式子表示);
(4)若只能擺放4根小棒,求θ的范圍.發(fā)布:2025/6/25 8:0:1組卷:549引用:5難度:0.5 -
2.如圖,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=4,BD=2,則BC=.
發(fā)布:2025/6/25 8:0:1組卷:282引用:6難度:0.7 -
3.如圖,四邊形ABCD中,AC⊥BD交BD于點E,點F,M分別是AB,BC的中點,BN平分∠ABE交AM于點N,AB=AC=BD.連接MF,NF.試說明:
(1)∠MBN=45°;
(2)△MFN∽△BDC.發(fā)布:2025/6/25 8:0:1組卷:101引用:1難度:0.3