如圖,在△ABC中,AB=AC,點(diǎn)D是BC邊上的中點(diǎn),點(diǎn)P是AC邊上的一個(gè)動(dòng)點(diǎn),延長(zhǎng)DP到點(diǎn)E,使∠CAE=∠CDE,作∠DCG=∠ACE,其中G點(diǎn)在DE上.
(1)如圖1,若∠B=45°,則AEDG=22;
(2)如圖2,若∠DCG=30°,AEDG=54,求S△DGCS△ABC=3636;
(3)如圖3,若∠ABC=60°,延長(zhǎng)CG至點(diǎn)M,使得MG=GC,連接AM,BM.在點(diǎn)P運(yùn)動(dòng)的過(guò)程中,探究:當(dāng)CPAC的值為多少時(shí),線段AM與DM的長(zhǎng)度之和取得最小值?

AE
DG
2
2
AE
DG
5
4
S
△
DGC
S
△
ABC
3
6
3
6
CP
AC
【考點(diǎn)】三角形綜合題.
【答案】;
2
3
6
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:422引用:3難度:0.1
相似題
-
1.定義:由一個(gè)三角形的三條中線圍成的三角形稱(chēng)為原三角形的中線三角形.
問(wèn)題:設(shè)中線三角形的面積為S1,原三角形的面積為S2.求的值.S1S2
特例探索:
(1)正三角形的邊長(zhǎng)為2,則中線長(zhǎng)為 ,所以=.S1S2
(2)如圖1,每個(gè)小正方形邊長(zhǎng)均為1,點(diǎn)A,B,C,D,E,F(xiàn),G均在網(wǎng)格點(diǎn)上.
①△CFG △ABC的中線三角形.(填“是”或“不是”)
②S△ABC=,S△CFG=,所以=.S1S2
一般情形:
如圖2,△ABC的三條中線分別是AD,BE,CF,將AD平移至CG,連結(jié)FG.
(3)求證:△CFG是△ABC的中線三角形;
(4)猜想的值,并說(shuō)明理由.S1S2發(fā)布:2025/5/22 7:30:2組卷:144引用:1難度:0.1 -
2.在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在△ABC內(nèi)部,且滿(mǎn)足∠ACD-∠BCD=2∠DAB,若△BCD的面積為13,則CD=.
發(fā)布:2025/5/22 10:0:1組卷:498引用:3難度:0.3 -
3.【問(wèn)題提出】
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點(diǎn)E在△ABC內(nèi)部,直線AD與BE交于點(diǎn)F.線段AF,BF,CF之間存在怎樣的數(shù)量關(guān)系?
【問(wèn)題探究】
(1)如圖(2),當(dāng)點(diǎn)D,F(xiàn)重合時(shí),
①AF與BE的數(shù)量關(guān)系是 .
②=.CFBF-AF
(2)如圖(1),當(dāng)點(diǎn)D,F(xiàn)不重合時(shí),求的值.CFBF-AF
(3)【問(wèn)題拓展】
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數(shù)),點(diǎn)E在△ABC內(nèi)部,直線AD與BE交于點(diǎn)F,求出線段AF,BF,CF之間的數(shù)量關(guān)系(用一個(gè)含有k的等式表示).發(fā)布:2025/5/22 8:0:2組卷:447引用:2難度:0.2
相關(guān)試卷