在數(shù)的學(xué)習(xí)過程中,我們總會對其中一些具有某種特性的數(shù)充滿好奇,如學(xué)習(xí)自然數(shù)時,我們發(fā)現(xiàn)一種特殊的自然數(shù)——“和平數(shù)”.
定義:對于一個正整數(shù)m,若將其各個數(shù)位上的數(shù)字分別平方后取其個位數(shù)字,順次排列后,得到一個新數(shù)n,則稱n是m的“和平數(shù)”.
例如:m=354,將其各個數(shù)位上的數(shù)字分別平方后得到的數(shù)為9,25,16,它們的個位數(shù)字依次為9,5,6,那么m=354的“和平數(shù)”n為956.
(1)求178的“和平數(shù)”與2035的“和平數(shù)”;
(2)若一個三位正整數(shù)x的“和平數(shù)”是195,求滿足條件的所有x的值.
【考點】規(guī)律型:數(shù)字的變化類.
【答案】(1)194,4095;
(2)135,175,935,975.
(2)135,175,935,975.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/8 20:0:1組卷:47引用:1難度:0.8
相似題
-
1.在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②-①得2S-S=27-1,S=27-1,即1+2+22+23+24+25+26=27-1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2016(a≠0且a≠1)的值.發(fā)布:2025/6/25 7:30:2組卷:106引用:2難度:0.3 -
2.(1)計算:1-2+3-4+5-6…+99-100;
(2)計算:2-4-6+8+10-12-14+16+18-20-22+24+…+2010-2012.發(fā)布:2025/6/25 7:30:2組卷:46引用:1難度:0.6 -
3.下列排列的每一列數(shù),研究它的排列有什么規(guī)律?并填出空格上的數(shù).
(1)1,-2,1,-2,1,-2,,,,…
(2)-2,4,-6,8,-10,,,…
(3)1,0,-1,1,0,-1,,,.發(fā)布:2025/6/25 7:30:2組卷:49引用:2難度:0.3