已知函數(shù)f(x)=|ax2-b|+ax2+bx(a>0).
(Ⅰ)若a=b=1,求函數(shù)f(x)的最小值;
(Ⅱ)若函數(shù)f(x)存在兩個(gè)不同的零點(diǎn)x1與x2,求x2x1+x1x2的取值范圍.
x
2
x
1
+
x
1
x
2
【考點(diǎn)】函數(shù)的最值.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:138引用:3難度:0.4
相似題
-
1.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( ?。?/h2>13發(fā)布:2024/12/29 3:0:1組卷:110引用:4難度:0.9 -
2.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內(nèi)存在最大值,且最大值為2,g(x)=
,若對(duì)任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實(shí)數(shù)m的取值可以是( ?。?/h2>12發(fā)布:2024/12/29 13:30:1組卷:133引用:3難度:0.5 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:121引用:4難度:0.5