對(duì)于一元二次方程ax2+bx+c=0(a≠0),下列說法:
①若a+b+c=0,則b2-4ac≥0;
②若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0(a≠0)必有兩個(gè)不相等的實(shí)根;
③若c是方程ax2+bx+c=0的一個(gè)根,則一定有ac+b+1=0成立;
④若x0是一元二次方程ax2+bx+c=0的根,則b2-4ac=(2ax0+b)2.
其中正確的有( ?。?/h1>
【考點(diǎn)】根的判別式;等式的性質(zhì).
【答案】C
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/13 23:0:1組卷:1067引用:10難度:0.4
相似題
-
1.若關(guān)于x的方程x2-mx+m=0有兩個(gè)相等實(shí)數(shù)根,則代數(shù)式2m2-8m+1的值為.
發(fā)布:2025/6/25 6:30:1組卷:992引用:15難度:0.7 -
2.若關(guān)于x的一元二次方程x2-4x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍為.
發(fā)布:2025/6/25 7:0:2組卷:882引用:17難度:0.5 -
3.方程ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)數(shù)根,則有;若有兩個(gè)不相等的實(shí)數(shù)根,則有;若方程無解,則有.
發(fā)布:2025/6/24 21:30:1組卷:34引用:1難度:0.9