定義非零向量OM=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,(x∈R),向量OM=(a,b)稱為函數(shù)f(x)=asinx+bcosx(x∈R)的“相伴向量”(其中點O為坐標原點).
(1)設(shè)函數(shù)h(x)=2sin(π3-x)-cos(π6+x),求函數(shù)h(x)的“相伴向量”OM的坐標;
(2)記OM=(0,2)的“相伴函數(shù)”為f(x),設(shè)函數(shù)g(x)=f(x)+23|sinx|-1,x∈[0,2π],若方程g(x)=k有四個不同實數(shù)根,求實數(shù)k的取值范圍;
(3)已知點M(a,b),(b≠0)滿足條件:ba∈(0,3],且向量OM的“相伴函數(shù)”f(x)在x=x0時取得最大值,當點M運動時,求tan2x0的取值范圍.
OM
=
(
a
,
b
)
OM
=
(
a
,
b
)
h
(
x
)
=
2
sin
(
π
3
-
x
)
-
cos
(
π
6
+
x
)
OM
OM
=
(
0
,
2
)
g
(
x
)
=
f
(
x
)
+
2
3
|
sinx
|
-
1
b
a
∈
(
0
,
3
]
OM
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/7 8:0:9組卷:42引用:3難度:0.5
相似題
-
1.已知函數(shù)f(x)=cos2ωx+2sinωxcosωx-sin2ωx(0<ω<4),且_____.
從以下①②③三個條件中任選一個,補充在上面條件中,并回答問題:①過點函數(shù)f(x)圖象與直線(π8,2);②的兩個相鄰交點之間的距離為π;③函數(shù)f(x)圖象中相鄰的兩條對稱軸之間的距離為y+2=0.π2
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)函數(shù),則是否存在實數(shù)m,使得對于任意g(x)=2cos(2x-π3),存在x1∈[0,π2],m=g(x2)-f(x1)成立?若存在,求實數(shù)m的取值范圍;若不存在,請說明理由.x2∈[0,π2]發(fā)布:2024/12/29 8:0:12組卷:37引用:4難度:0.4 -
2.已知向量
=(msin2x+2,cosx),3=(1,2cosx),設(shè)函數(shù)f(x)=n.m?n
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,若f(A)=4,b=1,△ABC的面積為,求實數(shù)a的值.32發(fā)布:2024/12/29 10:30:1組卷:7引用:3難度:0.5 -
3.已知在△ABC中,sinA+cosA=
1725
①求sinAcosA
②判斷△ABC是銳角三角形還是鈍角三角形
③求tanA的值.發(fā)布:2024/12/29 7:0:1組卷:66引用:3難度:0.5
把好題分享給你的好友吧~~