【數(shù)學概念】
有一條對角線平分一組對角的四邊形叫“對分四邊形”.
【概念理解】
(1)關于“對分四邊形”,下列說法正確的是 ①②①②.(填所有正確的序號)
①菱形是“對分四邊形”
②“對分四邊形”至少有兩組鄰邊相等
③“對分四邊形”的對角線互相平分
【問題解決】
(2)如圖①,PA為⊙O的切線,A為切點.在⊙O上是否存在點B、C,使以P、A、B、C為頂點的四邊形是“對分四邊形”?
小明的作法: ①以P為圓心,PA長為半徑作弧,與⊙O交于點B; ②連接PO并延長,交⊙O于點C; ③點B、C即為所求. |
(3)如圖②,已知線段AB和直線l,請在圖②中利用無刻度的直尺和圓規(guī),在直線l上作出點M、N,使以A、B、M、N為頂點的四邊形是“對分四邊形”.(只要作出一個即可,不寫作法,保留作圖痕跡)
(4)如圖③,⊙O的半徑為5,AB是⊙O的弦,AB=8,點C是⊙O上的動點,若存在四邊形ABCD是“對分四邊形”,且有一條邊所在的直線是⊙O的切線,直接寫出AC的長度.

【考點】圓的綜合題.
【答案】①②
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/6/14 20:30:2組卷:980引用:3難度:0.1
相似題
-
1.如圖,在△ACE中,CA=CE,∠CAE=30°,⊙O經過點C,且圓的直徑AB在線段AE上.
(1)試說明CE是⊙O的切線;
(2)若△ACE中AE邊上的高為h,試用含h的代數(shù)式表示⊙O的直徑AB;
(3)設點D是線段AC上任意一點(不含端點),連接OD,當CD+OD的最小值為6時,求⊙O的直徑AB的長.12發(fā)布:2025/6/23 17:30:1組卷:4522引用:9難度:0.1 -
2.某地質公園為了方便游客,計劃修建一條棧道BC連接兩條進入觀景臺OA的棧道AC和OB,其中AC⊥BC,同時為減少對地質地貌的破壞,設立一個圓形保護區(qū)⊙M(如圖所示),M是OA上一點,⊙M與BC相切,觀景臺的兩端A、O到⊙M上任意一點的距離均不小于80米.經測量,OA=60米,OB=170米,tan∠OBC=
.43
(1)求棧道BC的長度;
(2)①設OM=x,圓形保護區(qū)⊙M的半徑為y,求y關于x的函數(shù)關系式,并求出自變量x的取值范圍;
②當點M位于何處時,可以使該圓形保護區(qū)的面積最大?發(fā)布:2025/6/23 15:0:2組卷:41引用:1難度:0.3 -
3.如圖,C為圓周上一點,BD是⊙O的切線,B為切點.
(1)在圖(1)中,AB是⊙O的直徑,∠BAC=30°,則∠DBC的度數(shù)為.
(2)在圖(2)中,∠BA1C=40°,求∠DBC的度數(shù).
(3)在圖(3)中,∠BA1C=α,求∠DBC的大小.
(4)通過(1)、(2)、(3)的探究,你發(fā)現(xiàn)的結論是
(5)如圖(4),AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為.
(6)如圖(5),C是⊙O的直徑AB延長線上的一點,CD切⊙O于D,∠ACD的平分線分別交AD、BD于E、F,試猜想∠DEF的度數(shù)并說明理由.發(fā)布:2025/6/23 22:0:2組卷:106引用:1難度:0.3