已知f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調遞增,又f(4)=0,則(3x-1)f(2x)<0的解集是( ?。?/h1>
( - 2 , 1 3 ) | ( 1 3 , 2 ) |
( - 2 , 1 3 ) ∪ ( 2 , + ∞ ) | ( - ∞ ,- 2 ) ∪ ( 1 3 , 2 ) |
【考點】奇偶性與單調性的綜合.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/10/22 4:0:1組卷:278引用:6難度:0.6
相似題
-
1.設f(x)是連續(xù)的偶函數(shù),且當x>0時,f(x)是單調函數(shù),則滿足f(x)=f(
)的所有x之和為( )x+3x+4A.-8 B.-3 C.8 D.3 發(fā)布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,1)上單調遞增的函數(shù)是( ?。?/h2>
A.y=x?|x| B.y=sinx C. y=(12)|x|D.y=-cos(π?x) 發(fā)布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數(shù)f(x)是定義在R上的奇函數(shù),當x∈(0,+∞)時,f(x)=2log2(2x+1)-1,則下列說法正確的是( ?。?/h2>
A. f(-72)=5B.當x∈(-∞,0)時,f(x)=1-2log2(-2x+1) C.f(x)在R上單調遞增 D.不等式f(x)≥1的解集為 [12,+∞)發(fā)布:2024/12/28 23:30:2組卷:69引用:8難度:0.6