綜合與實踐:
綜合與實踐課上,老師讓同學(xué)們以“正方形的折疊”為主題開展數(shù)學(xué)活動.
【操作判斷】
操作一;如圖1,正方形紙片ABCD,將∠B沿過點A的直線折疊,使點B落在正方形ABCD的內(nèi)部,得到折痕AE,點B的對應(yīng)點為M,連接AM;將∠D沿過點A的直線折疊,使AD與AM重合,得到折痕AF,將紙片展平,連接EF.
(1)根據(jù)以上操作,易得點E,M,F(xiàn)三點共線,且①∠EAF=4545°;
②線段EF,BE,DF之間的數(shù)量關(guān)系為 EF=BE+DFEF=BE+DF.
【深入探究】
操作二:如圖2、將∠C沿EF所在直線折疊,使點C落在正方形ABCD的內(nèi)部,點C的對應(yīng)點為N,將紙片展平,連接NE、NF.
同學(xué)們在折紙的過程中發(fā)現(xiàn),當(dāng)點E的位置不同時,點N的位置也不同,當(dāng)點E在BC邊上某一位置時(點E不與點B,C重合),點N恰好落在折痕AE上,此時AM交NF于點P,如圖3所示.
(2)小明通過觀察圖形,得出這樣兩個結(jié)論:①AP=BE+DF;②∠BAE=30°.請任意選擇其中一個結(jié)論判斷其是否正確,并說明理由.
【拓展應(yīng)用】
(3)若正方形紙片ABCD的邊長為3,當(dāng)點N落在折痕AE或AF上時,請直接寫出線段BE的長.

【考點】四邊形綜合題.
【答案】45;EF=BE+DF
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/1 8:0:8組卷:1756引用:6難度:0.4
相似題
-
1.探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過點A作AM⊥EF于點M,請直接寫出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點,∠EAF=∠BAD,連接EF,過點A作AM⊥EF于點M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).猜想:∠B與∠D滿足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:880引用:1難度:0.1 -
2.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點D與點F在直線AC的兩側(cè)時,BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時,直接寫出CE的長度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點,F(xiàn)是正方形ABCD外一點,連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時,求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5
相關(guān)試卷