已知函數(shù)f(x)=x2-4ax+4a2+a+1,x<1 x-ax+2,x≥1
.(a∈R)
(Ⅰ)當a=2時,解不等式f(x)≥12;
(Ⅱ)f(x)的最小值為a+1,求a得取值范圍.
f
(
x
)
=
x 2 - 4 ax + 4 a 2 + a + 1 , x < 1 |
x - a x + 2 , x ≥ 1 |
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:59引用:1難度:0.6
相似題
-
1.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內(nèi)存在最大值,且最大值為2,g(x)=
,若對任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實數(shù)m的取值可以是( )12發(fā)布:2024/12/29 13:30:1組卷:133引用:3難度:0.5 -
2.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( ?。?/h2>13發(fā)布:2024/12/29 3:0:1組卷:110引用:4難度:0.9 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:120引用:4難度:0.5
把好題分享給你的好友吧~~