如圖,∠C=90°,AC=20,BC=10,AX⊥AC,點P和點Q同時從點A出發(fā),分別在線段AC和射線AX上運動,且AB=PQ,當(dāng)AP=10或2010或20時,以點A,P,Q為頂點的三角形與△ABC全等.
【考點】全等三角形的判定.
【答案】10或20
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/12 3:0:1組卷:2954引用:19難度:0.4
相似題
-
1.如圖,已知四邊形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,點E為線段AB的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.當(dāng)點Q的運動速度為厘米/秒時,能夠使△BPE與以C、P、Q三點所構(gòu)成的三角形全等.
發(fā)布:2025/6/13 4:30:2組卷:3077引用:31難度:0.6 -
2.如圖,點A、B、C、D在同一條直線上,AB=CD,AE=BF,CE=DF.求證:△AEC≌△BFD.
發(fā)布:2025/6/13 2:0:4組卷:132引用:3難度:0.6 -
3.如圖,用直尺和圓規(guī)作射線OC,使它平分∠AOB,則△ODC≌△OEC的理由是( ?。?/h2>
發(fā)布:2025/6/13 0:30:2組卷:3246引用:15難度:0.6