如圖,在長方形ABCD中,AB=12cm,BC=6cm,點P沿AB邊從點A開始向點B以2cm/s的速度移動;點Q沿DA邊從點D開始向點A以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間,那么:
(1)如圖1,當t=22時,線段AQ的長度等于線段AP的長度;
(2)如圖2,當t=33時,AQ與AP的長度之和是長方形ABCD周長的14;
(3)如圖3,點P到達B后繼續(xù)運動,到達C點后停止運動;Q到達A后也繼續(xù)運動,當P點停止運動的同時點Q也停止運動.當t為何值時,線段AQ的長度等于線段CP長度的一半?

1
4
【考點】四邊形綜合題.
【答案】2;3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/18 8:0:9組卷:235引用:2難度:0.2
相似題
-
1.(1)如圖1,在四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,對角線BD=8,求四邊形ABCD的面積;
(2)如圖2,園藝設計師想在正六邊形草坪一角∠BOC內改建一個小型的兒童游樂場OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,點M,N分別在射線OB和OC上,且∠MAN=90°,為了盡可能的少破壞草坪,要使游樂場OMAN面積最小,你認為園林規(guī)劃局的想法能實現嗎?若能,請求出游樂場OMAN面積的最小值;若不能,請說明理由.發(fā)布:2025/6/9 15:0:1組卷:243引用:2難度:0.2 -
2.如圖,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的邊長為2,將正方形BDEF繞點B旋轉一周,連接AE、BE、CD.
(1)請判斷線段AE和CD的數量關系,并說明理由;
(2)當A、E、F三點在同一直線上時,求CD的長;
(3)設AE的中點為M,連接FM,試求線段FM長的取值范圍.發(fā)布:2025/6/9 15:0:1組卷:209引用:1難度:0.1 -
3.[閱讀理解]
“倍長中線”是初中數學一種重要的思想方法.如圖1,在△ABC中,AD是BC邊上的中線,若延長AD至E,使DE=AD,連接CE,可根據SAB證明△ABD≌△ECD,則AB=EC.
[問題提出]
(1)如圖2,平行四邊形ABCD中,點E為CD邊的中點,在BC邊上找一點F,使得AF=AD+CF(要求:用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法).
(2)按照你(1)中的作圖過程證明:AF=AD+CF.發(fā)布:2025/6/9 15:30:2組卷:265引用:3難度:0.1