定義:兩個相似等腰三角形,如果它們的底角有一個公共的頂點,那么把這兩個三角形稱為“關(guān)聯(lián)等腰三角形”.如圖,在△ABC和△AED中,BA=BC,EA=ED,且△ABC∽△AED,所以稱△ABC和△AED為“關(guān)聯(lián)等腰三角形”,設(shè)它們的頂角為α,連接EB,DC,則稱DCEB為“關(guān)聯(lián)比”.

請閱讀小穎探究“關(guān)聯(lián)比”與α之間的關(guān)系的思維過程,請解答下列問題:
【特例感知】
(1)△ABC和△AED為“關(guān)聯(lián)等腰三角形”,且α=90°時,
①在圖1中,若點E落在AB上,則“關(guān)聯(lián)比”DCEB=22;
②在圖2中,探究△ABE和△ACD的關(guān)系,并求出“關(guān)聯(lián)比”DCEB的值.
【類比探究】
(2)如圖3,當(dāng)△ABC和△AED為“關(guān)聯(lián)等腰三角形”,且α=120°時,“關(guān)聯(lián)比”DCEB=33.
DC
EB
DC
EB
2
2
DC
EB
DC
EB
3
3
【考點】相似形綜合題.
【答案】;
2
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/22 7:0:1組卷:144引用:2難度:0.5
相似題
-
1.小波在復(fù)習(xí)時,遇到一個課本上的問題,溫故后進(jìn)行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點D,正方形PQMN的邊QM在BC上,頂點P,N分別在AB,AC上,且.若BC=6,AD=4,則正方形PQMN的邊長等于 ;PNBC+MNAD=1
(2)操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫△ABC,在AB上任取一點P',畫正方形P'Q'M'N',使Q',M'在BC邊上,N'在△ABC內(nèi),連結(jié)BN'并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN;
(3)推理:如圖3,若點E是BN的中點,求證:EP=EQ;
(4)拓展:在(2)的條件下,射線BN上截取NE=NM,連結(jié)EQ,EM(如圖4).當(dāng)∠NBM=30°時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.發(fā)布:2025/6/7 9:0:2組卷:103引用:3難度:0.3 -
2.圖①、圖②、圖③都是5×4的正方形網(wǎng)格,每個小正方形的頂點稱為格點,每個小正方形的邊長為1,點A、B、C、D均在格點上.請按要求解答問題.(畫圖只能用無刻度的直尺,保留作圖痕跡)
要求:(1)如圖①,=;BECE
(2)如圖②,在BC上找一點F使BF=2;
(3)如圖③,在AC上找一點M,連結(jié)BM、DM,使△ABM∽△CDM.發(fā)布:2025/6/7 8:30:2組卷:210引用:4難度:0.5 -
3.如圖①,在Rt△ABC中,∠C=90°,BC=8cm,AC=6cm,點P由A點出發(fā)以1cm/s的速度向終點C勻速移動,同時點Q由點C出發(fā)以2cm/s的速度向終點B勻速移動,當(dāng)一個點到達(dá)終點時另一個點也隨之停止移動.
(1)填空:在 秒時,△PCQ的面積為△ACB的面積的;38
(2)經(jīng)過幾秒,以P、C、Q為頂點的三角形與△ACB相似?
(3)如圖②,D為AB上一點,且AD=AC,運動時間t為多少時,CD⊥PQ?發(fā)布:2025/6/9 4:30:2組卷:133引用:2難度:0.3