如圖,拋物線y=-13x2+23x+1交x軸于A,B兩點,交y軸于點C,P是第一象限內(nèi)拋物線上的一個動點.
(1)求點A,B,C的坐標(biāo);
(2)求△ACP面積的最大值;
(3)將△AOC繞點A順時針旋轉(zhuǎn)90°后,點C落在點M的位置,將拋物線沿y軸平移后經(jīng)過點M,求平移后所得拋物線的解析式.
y
=
-
1
3
x
2
+
2
3
x
+
1
【考點】二次函數(shù)綜合題.
【答案】(1)點A、B、C的坐標(biāo)分別為:(3,0)、(-1,0)、(0,1);
(2);
(3).
(2)
9
8
(3)
y
=
-
1
3
(
x
-
1
)
2
+
6
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/27 21:0:2組卷:224引用:2難度:0.4
相似題
-
1.如圖,在平面直角坐標(biāo)系中,已知A、B、C三點的坐標(biāo)分別為A(-2,0),B(6,0),C(0,3).
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)過C點作CD平行于x軸交拋物線于點D,寫出D點的坐標(biāo),并求AD、BC的交點E的坐標(biāo);
(3)若拋物線的頂點為P,連接PC、PD,判斷四邊形CEDP的形狀,并說明理由.發(fā)布:2025/5/29 4:0:1組卷:252引用:21難度:0.1 -
2.如圖,AB、CD是半徑為1的⊙P兩條直徑,且∠CPB=120°,⊙M與PC、PB及弧CQB都相切,O、
Q分別為PB、弧CQB上的切點.
(1)試求⊙M的半徑r;
(2)以AB為x軸,OM為y軸(分別以O(shè)B、OM為正方向)建立直角坐標(biāo)系,
①設(shè)直線y=kx+m過點M、Q,求k,m;?????????????????
②設(shè)函數(shù)y=x2+bx+c的圖象經(jīng)過點Q、O,求此函數(shù)解析式;
③當(dāng)y=x2+bx+c<0時,求x的取值范圍;
④若直線y=kx+m與拋物線y=x2+bx+c的另一個交點為E,求線段EQ的長度.發(fā)布:2025/5/29 5:0:1組卷:72引用:2難度:0.1 -
3.如圖,ABCD為平行四邊形,以BC為直徑的⊙O經(jīng)過點A,∠D=60°,BC=2,一動點P在AD上移動,過點P作直線AB的垂線,分別交直線AB、CD于E、F,設(shè)點O到EF的距離為t,若B、P、F三點能構(gòu)成三角形,設(shè)此時△BPF的面積為S.
(1)計算平行四邊形ABCD的面積;
(2)求S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)△BPF的面積存在最大值嗎?若存在,請求出這個最大值,若不存在,請說明理由.發(fā)布:2025/5/29 5:30:2組卷:73引用:1難度:0.1