已知a<0,函數(shù)f(x)=acosx+1+sinx+1-sinx,其中x∈[-π2,π2].
(1)設(shè)t=1+sinx+1-sinx,求t的取值范圍,并把f(x)表示為t的函數(shù)g(t);
(2)求函數(shù)f(x)的最大值(可以用a表示);
(3)若對(duì)區(qū)間[-π2,π2]內(nèi)的任意x1,x2,總有|f(x1)-f(x2)|≤1,求實(shí)數(shù)a的取值范圍.
1
+
sinx
1
-
sinx
π
2
π
2
1
+
sinx
1
-
sinx
π
2
π
2
【考點(diǎn)】三角函數(shù)的最值;三角函數(shù)中的恒等變換應(yīng)用.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:572引用:9難度:0.3
相似題
-
1.若
,則f(x)在f(x)=sin2x+3sinxcosx-12上的最大值為( ?。?/h2>[π6,23π]發(fā)布:2024/12/17 19:30:3組卷:12引用:1難度:0.7 -
2.已知函數(shù)f(x)=cos2x+asinx-1,若不等式|f(x)|≤1任意的x∈[0,π]恒成立,則實(shí)數(shù)a的取值范圍為 .
發(fā)布:2024/12/9 7:30:1組卷:210引用:4難度:0.5 -
3.已知函數(shù)
.f(x)=4sin2(π4+x2)sinx+(cosx+sinx)(cosx-sinx)-1
(1)求f(x)的對(duì)稱中心;
(2)設(shè)常數(shù)ω>0,若函數(shù)f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;[-π2,2π3]
(3)若函數(shù)在區(qū)間g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1上的最大值為2,求a的值.[-π4,π2]發(fā)布:2024/12/1 14:0:1組卷:435引用:5難度:0.5
把好題分享給你的好友吧~~