如圖,我把對角線互相垂直的四邊形叫做“垂美四邊形”.
(1)性質(zhì)探究:如圖1,已知四邊形ABCD中,AC⊥BD,垂足為O,求證:AB2+CD2=AD2+BC2.
(2)解決問題:已知AB=5,BC=4,分別以△ABC的邊BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.如圖2,當(dāng)∠ACB=90°,連接PQ,求PQ.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:274引用:1難度:0.3
相似題
-
1.如圖,在△ABC中,∠BAC=90°,延長BA到點(diǎn)D,使AD=
AB,點(diǎn)E、F分別為BC、AC的中點(diǎn),請你在圖中找出一組相等關(guān)系,使其滿足上述所有條件,并加以證明.12發(fā)布:2025/1/24 8:0:2組卷:4引用:1難度:0.5 -
2.如圖,在△ABC中,AB=CB,∠ABC=90°,F(xiàn)為AB延長線上一點(diǎn),點(diǎn)E在線段BC上,且AE=CF.
求證:∠AEB=∠CFB.發(fā)布:2025/1/24 8:0:2組卷:453引用:4難度:0.7 -
3.如圖,在Rt△ABC中,∠C=∠BED=90°,且CD=DE,AD=BD,則∠B=.
發(fā)布:2025/1/28 8:0:2組卷:10引用:0難度:0.7