如圖1,?ABCD的頂點A在y軸正半軸,C在x軸正半軸,B(m,0),D(a,b).
(1)a,b滿足a-4+4-a+(b-8)2=0,求D的坐標;
(2)如圖2,在(1)的條件下,m=2,AC、BD交于點E,EF⊥BD交OA于點F,則AF=134134;
(3)如圖3,若a=b,作CP⊥OD于P,連接BP,E、F分別為OA、OP的中點,請判斷EF與BP的數(shù)量關(guān)系和位置關(guān)系,并證明.

a
-
4
+
4
-
a
+
(
b
-
8
)
2
=
0
13
4
13
4
【考點】四邊形綜合題.
【答案】
13
4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/22 8:0:9組卷:260引用:2難度:0.5
相似題
-
1.已知:在?ABCD中,∠BAD=45°,AB=BD,E為BC上一點,連接AE交BD于F,過點D作DG⊥AE于G,延長DG交BC于H
(1)如圖1,若點E與點C重合,且AF=,求AD的長;5
(2)如圖2,連接FH,求證:∠AFB=∠HFB;
(3)如圖3,連接AH交BF于M,當M為BF的中點時,請直接寫出AF與FH的數(shù)量關(guān)系.發(fā)布:2025/6/20 10:30:1組卷:532引用:2難度:0.3 -
2.如圖,四邊形ABCD是正方形,E是線段BC上一點,連接AE,將AE繞點E順時針旋轉(zhuǎn)90°,得到EF,過點F作FG⊥CD于點G.
(1)如圖①,當E是BC的中點時,請直接寫出線段FG和BE的數(shù)量關(guān)系;
(2)如圖②,當E不是BC的中點時,(1)中的結(jié)論是否成立?請說明理由;
(3)若BC=4,CE=2,EF與CD交于點P,請求出CP的長.發(fā)布:2025/6/20 12:0:2組卷:32引用:1難度:0.1 -
3.如圖1,正方形ABCD,E為平面內(nèi)一點,且∠BEC=90°,把△BCE繞點B逆時針旋轉(zhuǎn)90°得△BAG,直線AG和直線CE交于點F.
(1)證明:四邊形BEFG是正方形;
(2)若∠AGD=135°,猜測CE和CF的數(shù)量關(guān)系,并說明理由;
(3)如圖2,連接DF,若AB=13,CF=17,求DF的長.發(fā)布:2025/6/20 10:30:1組卷:97引用:1難度:0.1
相關(guān)試卷