試卷征集
加入會員
操作視頻

綜合與實(shí)踐
【背景介紹】
勾股定理是幾何學(xué)中的明珠,充滿著魅力.勾股定理是用代數(shù)思想解決幾何問題的最重要的工具之一,它不但因證明方法層出不窮吸引著人們,更因?yàn)閼?yīng)用廣泛而使人著迷.
【證明方法】
如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以證明勾股定理,思路是大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即
1
2
ab
×
4
+
b
-
a
2
,從而得到等式
c
2
=
1
2
ab
×
4
+
b
-
a
2
,化簡便得結(jié)論.a(chǎn)2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.
菁優(yōu)網(wǎng)
【方法應(yīng)用】
請利用“雙求法”解決下面的問題:
(1)如圖2,小正方形邊長為1,連接小正方形的三個頂點(diǎn),可得△ABC,則AB邊上的高為
14
17
17
14
17
17

【方法遷移】
(2)如圖3,在△ABC中,AC=14,AB=16,BC=6,AD是BC邊上的高,求AD的值.
【定理應(yīng)用】
(3)如圖4,在長方形ABCD中,AB=3,AB在數(shù)軸上,若以點(diǎn)A為圓心,對角線AC的長為半徑作弧交數(shù)軸的正半軸于點(diǎn)M,則點(diǎn)M表示的數(shù)為
13
-2
13
-2

【數(shù)學(xué)思想】
(4)在解決以上問題的過程中,讓我們感悟的數(shù)學(xué)思想有
①②
①②
(填序號).
①方程思想
②數(shù)形結(jié)合思想
③分類討論思想
④函數(shù)思想

【答案】
14
17
17
13
-2;①②
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/28 17:0:1組卷:142引用:3難度:0.5
相似題
  • 1.著名的趙爽弦圖(如圖①,其中四個直角三角形較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c),大正方形的面積可以表示為c2,也可以表示為
    4
    ×
    1
    2
    ab
    +
    a
    -
    b
    2
    ,由此推導(dǎo)出直角三角形的三邊關(guān)系:如果直角三角形兩條直角邊長為a,b,斜邊長為c,則a2+b2=c2
    菁優(yōu)網(wǎng)
    (1)圖②為美國第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請你利用圖②推導(dǎo)上面的關(guān)系式.利用以上所得的直角三角形的三邊關(guān)系進(jìn)行解答:
    (2)如圖③,在一條東西走向河流的一側(cè)有一村莊C,河邊原有兩個取水點(diǎn)A,B,其中AB=AC,由于某種原因,由C到A的路現(xiàn)在已經(jīng)不通,該村為方便村民取水決定在河邊新建一個取水點(diǎn)H(A、H、B條直線上),并新修一條路CH,且CH⊥AB.測得CH=6千米,HB=4.5千米,求新路CH比原路CA少多少千米?
    (3)在第(2)問中若AB≠AC時,CH⊥AB,AC=8,BC=10,AB=12,設(shè)AH=x,求x的值.

    發(fā)布:2024/10/8 2:0:2組卷:223引用:2難度:0.5
  • 2.請閱讀下面文字并完成相關(guān)任務(wù).
    勾股定理,是幾何學(xué)中一顆光彩奪目的明珠,被稱為“幾何學(xué)的基石”.在我國最早對勾股定理進(jìn)行證明的是三國時期吳國的數(shù)學(xué)家趙爽.
    (1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,用它可以驗(yàn)證勾股定理,思路是:大正方形的面積有兩種求法,一種是等于c2,另一種是等于四個直角三角形與一個小正方形的面積之和,即
    1
    2
    ab
    ×
    4
    +
    b
    -
    a
    2
    ,從而得到等式c2=
    1
    2
    ab
    ×
    4
    +
    b
    -
    a
    2
    ,化簡便得結(jié)論a2+b2=c2.這里用兩種求法來表示同一個量從而得到等式或方程的方法,我們稱之為“雙求法”.現(xiàn)在,請你用“雙求法”解決下面問題:
    如圖2,在△ABC中,AD是BC邊上的高,AB=4,AC=5,BC=6,設(shè)BD=x,求x的值.
    菁優(yōu)網(wǎng)?
    (2)2002年在北京召開的國際數(shù)學(xué)家大會會標(biāo)和2021年在上海召開的國際數(shù)學(xué)教育大會會標(biāo),都包含了趙爽的弦圖.如圖3,如果大正方形的面積為18,直角三角形中較短直角邊長為a,較長直角邊長為b,且a2+b2=ab+10,那么小正方形的面積為

    (3)勾股定理本身及其驗(yàn)證和應(yīng)用過程都體現(xiàn)了一種重要的數(shù)學(xué)思想是

    A.函數(shù)思想
    B.整體思想
    C.分類討論思想
    D.?dāng)?shù)形結(jié)合思想

    發(fā)布:2024/10/19 8:0:2組卷:202引用:1難度:0.5
  • 3.勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小明以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個全等的直角三角形如圖①或圖②擺放時,都可以用“面積法”來證明,下面是小明利用圖①證明勾股定理的過程:將兩個全等的直角三角形按圖①所示擺放,其中∠DAB=90°,求證:a2+b2=c2
    菁優(yōu)網(wǎng)
    證明:連接DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b-a,FC=DE=b,
    ∵S四邊形ADCB=S△ACD+S△ABC=
    1
    2
    b2+
    1
    2
    ab,
    S四邊形ADCB=S△ADB+S△DCB=
    1
    2
    c2+
    1
    2
    a(b-a)
    1
    2
    b2+
    1
    2
    ab=
    1
    2
    c2+
    1
    2
    a(b-a)
    ∴a2+b2=c2
    請參照上述證法,利用圖②完成下面的證明:
    將兩個全等的直角三角形按圖②所示擺放,其中∠DAB=90°.求證:a2+b2=c2

    發(fā)布:2024/10/20 7:0:2組卷:187引用:1難度:0.7
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正