二次函數(shù)y=ax2+bx+c(a≠0)的圖象與一次函數(shù)y1=x+k的圖象交于A(0,1)、B兩點(diǎn),C(1,0)為二次函數(shù)圖象的頂點(diǎn).
(1)求二次函數(shù)y=ax2+bx+c(a≠0)的表達(dá)式;
(2)在如圖中畫出二次函數(shù)y=ax2+bx+c(a≠0)與一次函數(shù)y1=x+k的圖象;
(3)把(1)中的二次函數(shù)y=ax2+bx+c(a≠0)的圖象平移后得到新的二次函數(shù)y2=ax2+bx+c+m(a≠0,m為常數(shù))的圖象,定義新函數(shù)f:“當(dāng)自變量x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1或y2,如果y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;如果y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).”新函數(shù)f的圖象與x軸的交點(diǎn)最多有幾個(gè)?并求出此時(shí)m的取值范圍.
【考點(diǎn)】拋物線與x軸的交點(diǎn);二次函數(shù)圖象與幾何變換;待定系數(shù)法求二次函數(shù)解析式;二次函數(shù)的性質(zhì);二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;一次函數(shù)的性質(zhì);一次函數(shù)的圖象.
【答案】(1)y=x2-2x+1;
(2)見解答;
(3)新函數(shù)f的圖象與x軸有三個(gè)交點(diǎn),m的取值范圍為-4<m<0.
(2)見解答;
(3)新函數(shù)f的圖象與x軸有三個(gè)交點(diǎn),m的取值范圍為-4<m<0.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:86引用:1難度:0.5
相似題
-
1.已知二次函數(shù)y=x2-mx+m-2:
(1)求證:不論m為任何實(shí)數(shù),此二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);
(2)當(dāng)二次函數(shù)的圖象經(jīng)過點(diǎn)(3,6)時(shí),確定m的值,并寫出此二次函數(shù)與坐標(biāo)軸的交點(diǎn)坐標(biāo).發(fā)布:2025/6/24 17:0:1組卷:1313引用:11難度:0.7 -
2.拋物線y=x2-2x+1與坐標(biāo)軸交點(diǎn)個(gè)數(shù)為( ?。?/h2>
發(fā)布:2025/6/24 17:30:1組卷:1079引用:22難度:0.9 -
3.二次函數(shù)y=2x2-2x+m(0<m<
),如果當(dāng)x=a時(shí),y<0,那么當(dāng)x=a-1時(shí),函數(shù)值y的取值范圍為( ?。?/h2>12發(fā)布:2025/6/25 5:30:3組卷:143引用:2難度:0.7