已知函數(shù)f(x)=2x+b2x+a(a,b為實數(shù)),且f(1)=13,f(0)=0.
(1)求a,b;
(2)判斷函數(shù)y=f(x)的單調(diào)性,并用定義證明;
(3)設g(x)=x2-2mx+6,其中m>2,若對任意的x1∈[1,2],總存在x2∈[1,3],使得f(x1)=g(x2)成立,求m的取值范圍.
f
(
x
)
=
2
x
+
b
2
x
+
a
f
(
1
)
=
1
3
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/21 21:0:4組卷:43引用:3難度:0.4
相似題
-
1.設函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:537引用:36難度:0.5 -
2.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:62引用:3難度:0.6 -
3.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(x)-1≥f(θ)恒成立,求實數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5