如圖,在平面直角坐標(biāo)系中,直線y=-x+3交x軸于點(diǎn)B,交y軸于點(diǎn)C,直線AD交x軸于點(diǎn)A,交y軸于點(diǎn)D,交直線BC于點(diǎn)E(-12,72),且CD=1.

(1)求直線AD解析式;
(2)點(diǎn)P從B點(diǎn)出發(fā)沿線段BA方向以1個(gè)單位/秒的速度向終點(diǎn)A運(yùn)動(dòng)(點(diǎn)P不與A,B兩點(diǎn)重合),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,則是否存在t,使得△AEP為等腰直角三角形?若存在,請(qǐng)求出t的值,若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,點(diǎn)P出發(fā)的同時(shí),點(diǎn)Q從C點(diǎn)出發(fā)沿射線CO方向運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)終點(diǎn)時(shí),點(diǎn)Q也停止運(yùn)動(dòng),連接AQ,PQ,設(shè)△APQ的面積為S,S與t的函數(shù)關(guān)系式為S=32t2-12t+212(0≤t<1) a(t-1)(t-7)(1<t<7)
,其圖象如圖2所示,結(jié)合圖1、圖2的信息,請(qǐng)求出a的值及當(dāng)△APQ的面積取得最大值時(shí)AQ的長(zhǎng).
(
-
1
2
,
7
2
)
S
=
3 2 t 2 - 12 t + 21 2 ( 0 ≤ t < 1 ) |
a ( t - 1 ) ( t - 7 ) ( 1 < t < 7 ) |
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x+4;
(2)存在,t=3.5;
(3),.
(2)存在,t=3.5;
(3)
a
=
-
3
2
97
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:293引用:3難度:0.3
相似題
-
1.如圖1,拋物線y=ax2+bx+c(a≠0)與x軸相交于點(diǎn)A、B(點(diǎn)B在點(diǎn)A左側(cè)),與y軸相交于點(diǎn)C(0,3).已知點(diǎn)A坐標(biāo)為(1,0),△ABC面積為6.
(1)求拋物線的解析式;
(2)點(diǎn)P是直線BC上方拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線BC的垂線,垂足為點(diǎn)E,過(guò)點(diǎn)P作PF∥y軸交BC于點(diǎn)F,求△PEF周長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,將該拋物線向左平移2個(gè)單位長(zhǎng)度得到新的拋物線y',平移后的拋物線與原拋物線相交于點(diǎn)D,點(diǎn)M為直線BC上的一點(diǎn),點(diǎn)N是平面坐標(biāo)系內(nèi)一點(diǎn),是否存在點(diǎn)M,N,使以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/4 17:30:2組卷:486引用:3難度:0.4 -
2.如圖,拋物線y=a(x+1)(x-3)交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸負(fù)半軸于C點(diǎn),已知S△ABC=6.
(1)求拋物線的解析式;
(2)在直線BC下方的拋物線上取一點(diǎn)P,連接AP交BC于E點(diǎn),當(dāng)tan∠AEC=4時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M、N均在拋物線上,設(shè)點(diǎn)M的橫坐標(biāo)為m,點(diǎn)N的橫坐標(biāo)為n,(0<n<m<3),連接MN,連接AM、AN分別與y軸交于點(diǎn)S、T,∠AMN=2∠BAM,請(qǐng)問(wèn)3OS+ST是否為定值?若是,求出其值;若不是,說(shuō)明理由.發(fā)布:2025/6/4 17:30:2組卷:236引用:1難度:0.1 -
3.已知拋物線y=ax2+bx-2與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.直線l由直線BC平移得到,與y軸交于點(diǎn)E(0,n).四邊形MNPQ的四個(gè)頂點(diǎn)的坐標(biāo)分別為M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
(1)填空:a=,b=;
(2)若點(diǎn)M在第二象限,直線l與經(jīng)過(guò)點(diǎn)M的雙曲線y=有且只有一個(gè)交點(diǎn),求n2的最大值;kx
(3)當(dāng)直線l與四邊形MNPQ、拋物線y=ax2+bx-2都有交點(diǎn)時(shí),存在直線l,對(duì)于同一條直線l上的交點(diǎn),直線l與四邊形MNPQ的交點(diǎn)的縱坐標(biāo)都不大于它與拋物線y=ax2+bx-2的交點(diǎn)的縱坐標(biāo).
①當(dāng)m=-3時(shí),直接寫(xiě)出n的取值范圍;
②求m的取值范圍.發(fā)布:2025/6/5 8:30:1組卷:1460引用:3難度:0.1