某藥廠銷售部門根據(jù)市場調研結果,對該廠生產(chǎn)的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數(shù)關系,其圖象是函數(shù)P=120t+4(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=2t+8,0<t≤12 -t+44,12<t≤24
(1)當8<t≤24時,求P關于t的函數(shù)解析式;
(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)
①求w關于t的函數(shù)解析式;
②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續(xù)生產(chǎn)和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.
120
t
+
4
2 t + 8 , 0 < t ≤ 12 |
- t + 44 , 12 < t ≤ 24 |
【考點】二次函數(shù)的應用.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:3261引用:12難度:0.1
相似題
-
1.某小區(qū)在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進行綠化,為了綠化環(huán)境又節(jié)省成本.如圖,已知矩形的邊BC=200m,邊AB=a m(a為不大于200的常數(shù)),四邊形MNPQ的頂點在矩形的邊上,且AM=BN=CP=DQ=x m,設四邊形MNPQ的面積為S m2
(1)求S關于x的函數(shù)關系式,并直接寫出自變量x的取值范圍;
(2)若a=120,求S的最小值,并求出此時x的值;
(3)若a=200,且每平方米綠化費用需50元,則此時綠化最低費用為發(fā)布:2025/6/23 12:30:1組卷:36引用:1難度:0.5 -
2.一公司生產(chǎn)某商品每件成本為20元,經(jīng)調研發(fā)現(xiàn),該商品在未來40天內的當天銷售量m(件)與時間第t(天)滿足關系式m=-2t+96;未來40天內,前20天當天的價格y1(元/件)與時間第t(天)的函數(shù)式為y1=0.25t+25(1≤t≤20且t為整數(shù)),后20天當天的價格y2(元/件)與時間第t(天)的函數(shù)式為y2=-0.5t+40(21≤t≤40且t為整數(shù)).
(1)求日銷售利潤W(元)與時間第t(天)的函數(shù)關系式,并寫出自變量的取值范圍;
(2)請預測未來40天中第 天的日銷售利潤最大,最大日銷售利潤是 元.
(3)在實際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<5)給希望工程,公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間第t(天)的增大而增大,求a的取值范圍.發(fā)布:2025/6/23 11:0:1組卷:116引用:1難度:0.3 -
3.某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.
(1)求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?發(fā)布:2025/6/23 13:0:10組卷:4903引用:72難度:0.5