已知△ABC內(nèi)接于⊙O,AB=BC,AD⊥BC于點D.
(1)如圖1,求證:∠ABC=2∠CAD;
(2)如圖2,延長AD,交⊙O于點E,點F在線段AD上,DF=DE,過點F作FG⊥AC,垂足為點G,求證:AG=CG;
(3)如圖3,在(2)的條件下,連接CE,點H在線段BD上,CH=CE,連接AH、OH,若AB=10,S△ABC=30,求線段OH的長.

【考點】圓的綜合題.
【答案】(1)證明見解答過程;
(2)證明見解答過程;
(3).
(2)證明見解答過程;
(3)
5
3
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/24 12:0:3組卷:99引用:1難度:0.1
相似題
-
1.如圖,⊙O的直徑AB=8,點D是半圓上的一動點(點D與A,B不重合),點C是弧BD的中點,過點C作CE⊥AD交射線AD于點E,連接CD、BC.
(1)求證:CE是⊙O切線;
(2)當(dāng)∠BCD=150°時,求陰影面積;
(3)在點D運動過程中,設(shè)AD=x,DE=y,求y與x之間的函數(shù)關(guān)系式,并求出AD?DE的最大值.發(fā)布:2025/6/12 14:0:2組卷:62引用:1難度:0.2 -
2.如圖,四邊形ABCD內(nèi)接于⊙O,AC為對角線,AC=AD,直徑AE交CD于點F,連接DE.
(1)如圖1,求證:AE⊥CD;
(2)如圖2,連接BD交AC于點G,∠AGD+∠ADC=180°,求證:;?BC=?CD
(3)如圖3,在(2)的條件下,過點G作GH⊥CD于H,過點A作AM∥BD交⊙O于點M,若BG=GH,AE=10,求線段AM的長.發(fā)布:2025/6/12 9:0:1組卷:66引用:5難度:0.3 -
3.圓心到弦的距離叫做該弦的弦心距.
【數(shù)學(xué)理解】如圖①,在⊙O中,AB是弦,OP⊥AB,垂足為P,則OP的長是弦AB的弦心距.
(1)若⊙O的半徑為5,弦AB的弦心距為3,則AB的長為 .
(2)若⊙O的半徑確定,下列關(guān)于AB的長隨著OP的長的變化而變化的結(jié)論:
①AB的長隨著OP的長的增大而增大;②AB的長隨著OP的長的增大而減??;③AB的長與OP的長無關(guān).
其中所有正確結(jié)論的序號是 .
(3)【問題解決】若弦心距等于該弦長的一半,則這條弦所對的圓心角的度數(shù)為 °.
(4)已知如圖②給定的線段EF和⊙O,點Q是⊙O內(nèi)一定點.過點Q作弦AB,滿足AB=EF,請問這樣的弦可以作 條.發(fā)布:2025/6/12 11:30:1組卷:50引用:2難度:0.4