在平面直角坐標系xOy中,拋物線y=ax2+4ax+4a+1(a<0)交x軸于A,B兩點.
(1)將AB沿y軸正方向平移動t個單位得到A′B′,當拋物線與A′B′有且僅有一個公共點時,求t的取值;
(2)當-3≤x≤0時,拋物線恒在直線y=2x+a的上方,求a的取值范圍;
(3)將此拋物線在A,B之間的部分與線段AB所圍成的區(qū)域(包括邊界)記為G,在G內(nèi)的整點(橫、縱坐標都是整數(shù)的點)是否存在有且只有8個?若存在,求出a的取值范圍;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)t=1;
(2);
(3).
(2)
-
1
3
<
a
<
0
(3)
-
1
9
≤
a
<
-
1
16
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/13 8:0:8組卷:238引用:2難度:0.2
相似題
-
1.如圖,拋物線y=ax2-2x+c與x軸相交于A(-1,0),B(3,0)兩點.
(1)求拋物線的函數(shù)表達式;
(2)點C在拋物線的對稱軸上,且位于x軸的上方,將△ABC沿直線AC翻折得到△AB'C,點B'恰好落在拋物線的對稱軸上.若點G為直線AC下方拋物線上的一點,求當△AB'G面積最大時點G的橫坐標;
(3)點P是拋物線上位于對稱軸右側(cè)的一點,在拋物線的對稱軸上存在一點Q使得△BPQ為等邊三角形,請直接寫出此時直線AP的函數(shù)表達式.發(fā)布:2025/5/23 16:30:1組卷:1756引用:7難度:0.1 -
2.如圖,拋物線與x軸交于A(x1,0),B(x2,0)兩點,且x1<x2,與y軸交于點C(0,-5),其中x1,x2是方程x2-4x-5=0的兩個根.
(1)求這條拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連接CM,當△CMN的面積最大時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸是否存在點F,使以A,D,E,F(xiàn)四點為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點F的坐標;如果不存在,請說明理由.發(fā)布:2025/5/23 16:0:1組卷:388引用:4難度:0.3 -
3.已知拋物線L:
經(jīng)過點(-2,3)和(6,7),與x軸的交點為A、B,且點A在點B的左側(cè),與y軸交于點C.y=12x2+bx+c
(1)求拋物線L的函數(shù)表達式;
(2)將拋物線L平移,得到拋物線L',且點A經(jīng)過平移后得到的對應(yīng)點為A'.要使△A'BC是以BC為斜邊的等腰直角三角形,求滿足條件的拋物線L'的函數(shù)表達式.發(fā)布:2025/5/23 17:0:1組卷:417引用:2難度:0.1
相關(guān)試卷