試卷征集
加入會員
操作視頻

在菱形ABCD中,∠ABC=60°,P是射線BD上一動點,以AP為邊向右側(cè)作等邊△APE,連接CE.
(1)如圖1,當(dāng)點P在菱形ABCD內(nèi)部時,則BP與CE的數(shù)量關(guān)系是
BP=CE
BP=CE
,CE與AD的位置關(guān)系是
CE⊥AD
CE⊥AD

(2)如圖2,當(dāng)點P在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;
(3)如圖2,連接BE,若AB=2
3
,BE=2
19
,求AP的長.

【考點】四邊形綜合題
【答案】BP=CE;CE⊥AD
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:323引用:2難度:0.2
相似題
  • 1.如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
    探究一:已知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設(shè)存在正方形EFGH,它的面積是正方形ABCD的2倍.
    因為正方形ABCD的面積為1,則正方形EFGH的面積為2,
    所以EF=FG=GH=HE=
    2
    ,設(shè)EB=x,則BF=
    2
    -x,
    ∵Rt△AEB≌Rt△BFC
    ∴BF=AE=
    2
    -x
    在Rt△AEB中,由勾股定理,得
    x2+(
    2
    -x)2=12
    解得,x1=x2=
    2
    2

    ∴BE=BF,即點B是EF的中點.
    同理,點C,D,A分別是FG,GH,HE的中點.
    所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍
    探究二:已知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)
    探究三:已知邊長為1的正方形ABCD,
    一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
    探究四:已知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)

    發(fā)布:2025/6/14 10:0:1組卷:408引用:10難度:0.1
  • 2.如圖,矩形ABCD中,AB=4cm,BC=2cm,動點P從點A出發(fā),以2cm/s的速度沿AB向終點B勻速運(yùn)動;同時動點Q從點B出發(fā),以3cm/s的速度沿BC-CD向終點D勻速運(yùn)動,連接PQ.設(shè)點P的運(yùn)動時間為t(s),△BPQ的面積為S(cm2).
    (1)當(dāng)PQ∥BC時,求t的值;
    (2)求S與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
    (3)當(dāng)△BPQ的面積是矩形ABCD面積的
    1
    4
    時,直接寫出t的值.

    發(fā)布:2025/6/14 10:0:1組卷:85引用:7難度:0.2
  • 3.在平面直角坐標(biāo)系xOy中,過原點O及點A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒
    2
    個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設(shè)移動時間為t秒.
    (1)填空,OP=
    ,OQ=
    (用含t的代數(shù)式表示);
    (2)設(shè)△OPQ的面積為S1,△BQC的面積為S2,當(dāng)t為何值時,S1+S2的值為30.
    (3)求當(dāng)t為何值時,△PQB為直角三角形.

    發(fā)布:2025/6/14 10:0:1組卷:106引用:4難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正