如圖,頂點為A的拋物線y=a(x+2)2-4交x軸于點B(1,0),連接AB,過原點O作射線OM∥AB,過點A作AD∥x軸交OM于點D,點C為拋物線與x軸的另一個交點,連接CD.
(1)求拋物線的解析式(關(guān)系式);
(2)求點A,B所在的直線的解析式(關(guān)系式);
(3)若動點P從點O出發(fā),以每秒1個單位長度的速度沿著射線OM運動,設(shè)點P運動的時間為t秒,問:當(dāng)t為何值時,四邊形ABOP分別為平行四邊形?等腰梯形?
(4)若動點P從點O出發(fā),以每秒1個單位長度的速度沿線段OD向點D運動,同時動點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CO向點O運動,當(dāng)其中一個點停止運動時另一個點也隨之停止運動.設(shè)它們的運動時間為t秒,連接PQ.問:當(dāng)t為何值時,四邊形CDPQ的面積最???并求此時PQ的長.
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/18 22:0:2組卷:381引用:53難度:0.5
相似題
-
1.對于平面直角坐標(biāo)系xOy中的點P(m,n),定義一種變換:作點P(m,n)關(guān)于y軸對稱的點P′,再將P′向左平移k(k>0)個單位得到點Pk′,Pk′叫做對點P(m,n)的k階“?”變換.若一個函數(shù)圖象上所有點都進(jìn)行了k階“?”變換后組成的圖形稱為此函數(shù)進(jìn)行了k階“?”變換后的圖形.
(1)求P(3,2)的3階“?”變換后P3′的坐標(biāo);
(2)若直線y=x+1經(jīng)過k階“?”變換后的圖象與反比例函數(shù)的圖象y=沒有公共點,求k的取值范圍.2x
(3)若拋物線C1:y=x2-4x+3與直線l:y=-x+3交于A,B兩點,拋物線C1經(jīng)過k階“?”變換后的圖象記為C2,C2與直線l交于C,D兩點,若=CDAB,求k的值.73發(fā)布:2025/6/22 7:30:1組卷:186引用:1難度:0.1 -
2.如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+
與y軸相交于點A,點B與點O關(guān)于點A對稱14
(1)填空:點B的坐標(biāo)是 ;
(2)過點B的直線y=kx+b(其中k<0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;
(3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標(biāo).發(fā)布:2025/6/22 7:30:1組卷:1970引用:5難度:0.3 -
3.六個函數(shù)分別是①y=x;②y=-x+1;③y=x2;④y=-x2+2x-1;⑤y=x3;⑥y=-x3+1.
(1)其中一次函數(shù)是①,②,二次函數(shù)是③,④,則⑤,⑥的函數(shù)可以定義為
(2)我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)y=x3的圖象和性質(zhì);
①填寫下表,畫出函數(shù)的圖象;
②觀察圖象,寫出該函數(shù)兩條不同類型的性質(zhì);
(3)若點A(a,b)(a>0)是函數(shù)y=x3圖象上一點,點A關(guān)于y軸的對稱點為點B,點A關(guān)于原點O的對稱點為點C,若順次連接A,B,C,則△ABC的形狀為x … -2 - 32-1 0 1 322 … y=x3 … …
(4)函數(shù)y=-x3+1的圖象關(guān)于點發(fā)布:2025/6/22 8:30:1組卷:47引用:2難度:0.3
相關(guān)試卷