已知AD為等邊△ABC的角平分線,動(dòng)點(diǎn)E在直線AD上(不與點(diǎn)A重合),連接BE.以BE為一邊在BE的下方作等邊△BEF,連接CF.

(1)如圖1,若點(diǎn)E在線段AD上,且DE=BD,則∠CBF=1515度.
(2)如圖2,若點(diǎn)E在AD的反向延長(zhǎng)線上,且直線AE,CF交于點(diǎn)M.
①求∠AMC的度數(shù);
②若△ABC的邊長(zhǎng)為8,P,Q為直線CF上的兩個(gè)動(dòng)點(diǎn),且PQ=10.連接BP,BQ.判斷△BPQ的面積是否為定值.若是,請(qǐng)直接寫出這個(gè)定值;若不是,請(qǐng)說明理由.
【考點(diǎn)】三角形綜合題.
【答案】15
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/29 11:0:2組卷:657引用:1難度:0.1
相似題
-
1.已知,在△AOB和△COD中,AO=CO,∠AOB=∠COD=∠α,∠B=∠D,且A,O,D三點(diǎn)在同一條直線上.
(1)如圖1,求證:OB=OD;
(2)如圖2,連接AC、DB并延長(zhǎng)交于點(diǎn)Q.當(dāng)∠α=120°時(shí),判斷△QAD的形狀,并說明理由;
(3)如圖3,過D點(diǎn)作DG⊥AQ,垂足為G,若QB=4,DG=5,當(dāng)∠α=135°時(shí),求QC的長(zhǎng).發(fā)布:2025/5/30 23:0:1組卷:304引用:2難度:0.4 -
2.如圖1,在平面直角坐標(biāo)系中,△ABC為等腰直角三角形,∠AOB=90°,AO=BO,點(diǎn)A的坐標(biāo)為(4,1).
(1)求點(diǎn)B的坐標(biāo);
(2)如圖2,在x軸上找一點(diǎn)P,使得PA+PB的值最小,并寫出點(diǎn)P的坐標(biāo);
(3)在第四象限是否存在一點(diǎn)M,使得以點(diǎn)O,A,M為頂點(diǎn)的三角形是等腰直角三角形,若存在,請(qǐng)直接寫出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.發(fā)布:2025/5/30 23:30:1組卷:101引用:2難度:0.1 -
3.同學(xué)們,我們已經(jīng)掌握了等腰三角形的性質(zhì)與判定,借助于等腰三角形的性質(zhì)與判定可以進(jìn)一步獲得如下結(jié)論:在直角三角形中,90°的直角所對(duì)的邊為斜邊,那么斜邊的中線等于斜邊的一半;請(qǐng)理解這個(gè)結(jié)論并解決相關(guān)問題:如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-3,4)且OA=5,延長(zhǎng)AO到點(diǎn)B使AO=BO;
(1)在y軸上存在點(diǎn)C使∠ACB=90°,求點(diǎn)C的坐標(biāo);
(2)在(1)的條件下在x軸上確定點(diǎn)P,使PC-PA的值最大,直接畫出點(diǎn)P的位置;
(3)在x軸上存在點(diǎn)D,使△AOD是以AO為腰的等腰三角形,直接寫出點(diǎn)D的坐標(biāo);發(fā)布:2025/5/30 22:0:2組卷:19引用:3難度:0.1