已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|)
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍;
(Ⅲ)定義在[p,q]上的一個函數(shù)m(x),用分法T:p=x0<x1<…<xi<…<xn=q將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式n∑i=1|m(xi)-m(xi-1)|≤M恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試判斷函數(shù)f(x)是否為在[1,3]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由.(參考公式:n∑i=1f(x)=f(x1)+f(x2)+…+f(xn))
n
∑
i
=
1
|
m
(
x
i
)
-
m
(
x
i
-
1
)
|
≤
M
n
∑
i
=
1
f
(
x
)
=
f
(
x
1
)
+
f
(
x
2
)
+
【考點(diǎn)】函數(shù)恒成立問題;二次函數(shù)的性質(zhì)與圖象.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:140引用:14難度:0.1
相似題
-
1.把符號
稱為二階行列式,規(guī)定它的運(yùn)算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:14引用:5難度:0.5 -
2.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:538引用:36難度:0.5 -
3.對于任意x1,x2∈(2,+∞),當(dāng)x1<x2時,恒有
成立,則實數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:63引用:3難度:0.6