對于定義域為R的函數(shù)g(x),若存在正常數(shù)T,使得cosg(x)是以T為周期的函數(shù),則稱g(x)為余弦周期函數(shù),且稱T為其余弦周期.已知f(x)是以T為余弦周期的余弦周期函數(shù),其值域為R.設(shè)f(x)單調(diào)遞增,f(0)=0,f(T)=4π.
(1)驗證g(x)=x+sinx3是以6π為周期的余弦周期函數(shù);
(2)設(shè)a<b,證明對任意c∈[f(a),f(b)],存在x0∈[a,b],使得f(x0)=c;
(3)證明:“u0為方程cosf(x)=1在[0,T]上的解,”的充要條件是“u0+T為方程cosf(x)=1在區(qū)間[T,2T]上的解”,并證明對任意x∈[0,T],都有f(x+T)=f(x)+f(T).
x
3
【考點】函數(shù)與方程的綜合運(yùn)用.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:913引用:13難度:0.1
把好題分享給你的好友吧~~