試卷征集
加入會(huì)員
操作視頻

問(wèn)題發(fā)現(xiàn)

(1)如圖1,已知正方形ABCD和正方形AEFG,直接寫出CF與DG之間的數(shù)量關(guān)系:
CF=
2
DG
CF=
2
DG

拓展探究
(2)將正方形AEFG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到圖2所示的位置,連接DG,CF,試猜想CF與DG之間的數(shù)量關(guān)系,并說(shuō)明理由.
類比遷移
(3)如圖3,已知菱形ABCD和菱形AEFG,∠DAB=60°,將菱形AEFG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α≤90°),連接DG,CF,請(qǐng)?jiān)趥溆脠D中畫出草圖,判定CF與DG之間的數(shù)量關(guān)系是否隨著α的變化而變化,并說(shuō)明理由.

【考點(diǎn)】幾何變換綜合題
【答案】CF=
2
DG
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:650引用:2難度:0.2
相似題
  • 1.已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,A(a,b)滿足
    a
    -
    b
    -
    2
    +
    |
    b
    -
    4
    |
    =
    0
    ,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C,點(diǎn)P(x,y)是線段BC上的動(dòng)點(diǎn).
    (1)填空:a=
    ,b=
    ,點(diǎn)C的坐標(biāo)為
    ;
    (2)如圖1,求x,y滿足的關(guān)系式;
    (3)如圖2,若∠BOP=∠AOB,點(diǎn)E是線段OB上一動(dòng)點(diǎn),連CE交OP于點(diǎn)F,探究∠OFC,∠BCE與∠OEC三個(gè)角之間的數(shù)量關(guān)系,并寫出證明過(guò)程.(注:三角形三個(gè)內(nèi)角的和等于180°)

    發(fā)布:2025/6/6 1:30:1組卷:75引用:1難度:0.2
  • 2.已知△ABC和△ADE都是等腰三角形,且AB=AC,AD=AE,∠DAE=∠BAC.
    [初步感知](1)特殊情形:如圖①,當(dāng)點(diǎn)D、E分別落在邊AB、AC上時(shí),那么DB
    EC.(填<、>或=)
    [發(fā)現(xiàn)證明](2)如圖②,將圖①中的△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)D在△ABC外部,點(diǎn)E在△ABC內(nèi)部時(shí),求證:DB=EC;
    [深入研究](3)如圖③,如果△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)C、D、E在同一直線上,AM為△ADE中DE邊上的高,則∠CDB的度數(shù)為
    ,線段AM,BD,CD之間的數(shù)量關(guān)系為

    發(fā)布:2025/6/6 1:0:1組卷:318引用:4難度:0.2
  • 3.如圖,AB∥CD,點(diǎn)E在AB上,點(diǎn)G在CD上.
    (1)如圖1,在AB、CD上分別取點(diǎn)M、N,連接MN,點(diǎn)F在MN上,已知FH平分∠MFE,F(xiàn)K平分∠MFG,若∠AEF=30°,∠CGF=42°,求∠EFG,∠HFK的度數(shù).
    (2)如圖2,EK平分∠FEB,GH平分∠CGF,反向延長(zhǎng)GH交EK于K,設(shè)∠EFG=x,請(qǐng)通過(guò)計(jì)算,用含x的代數(shù)式表示∠EKG.
    (3)如圖3,已知∠FHG=90°,∠FGH=60°,F(xiàn)K平分∠EFH,GK平分∠CGH,請(qǐng)直接寫出∠AEF與∠FKG的數(shù)量關(guān)系

    ?

    發(fā)布:2025/6/6 4:30:1組卷:217引用:2難度:0.3
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正