如圖,拋物線y=ax2+2ax+c與y軸負(fù)半軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),點(diǎn)B的坐標(biāo)為(1,0),OC=3OB.
(1)求拋物線的解析式;
(2)若點(diǎn)D是第三象限拋物線上的動(dòng)點(diǎn),連接AC,當(dāng)△ACD的面積為3時(shí),求出此時(shí)點(diǎn)D的坐標(biāo);
(3)將拋物線y=ax2+2ax+c向右平移2個(gè)單位,平移后的拋物線與原拋物線相交于點(diǎn)M,N在原拋物線的對稱軸上,H為平移后的拋物線上一點(diǎn),當(dāng)以A、M、H、N為頂點(diǎn)的四邊形是平行四邊形時(shí),請直接寫出點(diǎn)H的坐標(biāo).
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=x2+2x-3;(2)D(-1,-4)或D(-2,-3);(3)以A、M、H、N為頂點(diǎn)的四邊形是平行四邊形時(shí),點(diǎn)H的坐標(biāo)為(2,-3)或(-2,5)或(-4,21).
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/23 8:0:10組卷:145引用:1難度:0.5
相似題
-
1.已知拋物線y=ax2+bx-3經(jīng)過點(diǎn)A(1,0),B(-2,-3),頂點(diǎn)為點(diǎn)P,與y軸交于點(diǎn)C.
(1)求該拋物線的表達(dá)式以及頂點(diǎn)P的坐標(biāo);
(2)將拋物線向上平移m(m>0)個(gè)單位后,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)M,若此時(shí)MB∥AC,求m的值;
(3)設(shè)點(diǎn)D在拋物線y=ax2+bx-3上,且點(diǎn)D在直線BC上方,當(dāng)∠DBC=∠BAC時(shí),求點(diǎn)D的坐標(biāo).發(fā)布:2025/5/24 11:30:1組卷:471引用:1難度:0.3 -
2.如圖,二次函數(shù)y=ax2+bx+5的圖象經(jīng)過點(diǎn)(1,8),且與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A(-1,0),M為拋物線的頂點(diǎn).
(1)求二次函數(shù)的解析式;
(2)求△MCB的面積;
(3)在坐標(biāo)軸上是否存在點(diǎn)N,使得△BCN為直角三角形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.發(fā)布:2025/5/24 12:0:1組卷:1427引用:7難度:0.5 -
3.如圖,在直角坐標(biāo)系中有Rt△AOB,O為坐標(biāo)原點(diǎn),A(0,3),B(-1,0),將此三角形繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到Rt△COD,二次函數(shù)y=ax2+bx+c的圖象剛好經(jīng)過A,B,C三點(diǎn).
(1)求二次函數(shù)的解析式及頂點(diǎn)P的坐標(biāo);
(2)過定點(diǎn)Q的直線l:y=kx-k+3與二次函數(shù)圖象相交于M,N兩點(diǎn).
①若S△PMN=2,求k的值;
②證明:無論k為何值,△PMN恒為直角三角形;
③當(dāng)直線l繞著定點(diǎn)Q旋轉(zhuǎn)時(shí),△PMN外接圓圓心在一條拋物線上運(yùn)動(dòng),直接寫出該拋物線的表達(dá)式.發(fā)布:2025/5/24 12:0:1組卷:727引用:7難度:0.2
相關(guān)試卷