對1個(gè)單位質(zhì)量的含污物體進(jìn)行清洗,清洗前其清潔度(含污物體的清潔度定義為:1-污物質(zhì)量物體質(zhì)量(含污物))為0.8,要求洗完后的清潔度是0.99.有兩種方案可供選擇,方案甲:一次清洗;方案乙:兩次清洗.該物體初次清洗后受殘留水等因素影響,其質(zhì)量變?yōu)閍(1≤a≤3).設(shè)用x單位質(zhì)量的水初次清洗后的清潔度是x+0.8x+1(x>a-1),用y質(zhì)量的水第二次清洗后的清潔度是y+acy+a,其中c(0.8<c<0.99)是該物體初次清洗后的清潔度.
(Ⅰ)分別求出方案甲以及c=0.95時(shí)方案乙的用水量,并比較哪一種方案用水量較少;
(Ⅱ)若采用方案乙,當(dāng)a為某定值時(shí),如何安排初次與第二次清洗的用水量,使總用水量最少?并討論a取不同數(shù)值時(shí)對最少總用水量多少的影響.
1
-
污物質(zhì)量
物體質(zhì)量
(
含污物
)
x
+
0
.
8
x
+
1
y
+
ac
y
+
a
【考點(diǎn)】基本不等式及其應(yīng)用;根據(jù)實(shí)際問題選擇函數(shù)類型.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/20 15:0:1組卷:762引用:7難度:0.5
相似題
-
1.已知x、y、z是互不相等的正數(shù),則在x(1-y)、y(1-z)、z(1-x)三個(gè)值中,大于
的個(gè)數(shù)的最大值是( ?。?/h2>14A.0 B.1 C.2 D.3 發(fā)布:2024/12/30 19:30:5組卷:87引用:2難度:0.6 -
2.若x≥y,則下列不等式中正確的是( ?。?/h2>
A.2-x≥2-y B. x+y2≥xyC.x2≥y2 D.x2+y2≥2xy 發(fā)布:2025/1/5 19:30:5組卷:155引用:3難度:0.7 -
3.已知正實(shí)數(shù)a,b滿足ab+2a-2=0,則4a+b的最小值是( ?。?/h2>
A.2 B. 42-2C. 43-2D.6 發(fā)布:2024/12/29 1:30:1組卷:631引用:3難度:0.8
把好題分享給你的好友吧~~