小明和小林做游戲,每人連續(xù)投擲一枚均勻的硬幣5次,誰(shuí)投擲出的結(jié)果的概率小,誰(shuí)就獲勝,概率相等則為平局.
(1)小明連續(xù)5次都是正面朝上,小林前3次是反面朝上,后2次是正面朝上,兩人都認(rèn)為自己贏了,你認(rèn)為小明和小林誰(shuí)贏了(通過(guò)計(jì)算兩人的概率說(shuō)明);
(2)如果用X表示小明5次投擲中正面朝上的次數(shù),求X的分布列及期望;
(3)已知在某局中小林先投,5次中出現(xiàn)2次正面朝上,問(wèn)小明贏的概率有多大?
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望);離散型隨機(jī)變量及其分布列.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:25引用:2難度:0.9
相似題
-
1.某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 A.m=0.1 B.n=0.1 C.E(Y)=-8 D.D(Y)=-7.8 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( )
A.0 B.1 C.2 D.3 發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
把好題分享給你的好友吧~~