定義:在任意△ABC中,如果一個內(nèi)角度數(shù)的2倍與另一個內(nèi)角度數(shù)的和為90°,那么稱此三角形為“倍角互余三角形.
【基礎(chǔ)鞏固】(1)若△ABC是“倍角互余三角形”,∠C>90°,∠A=60°,則∠B=1515°;
【嘗試應(yīng)用】(2)如圖1,在Rt△ABC中,∠ACB=90°,點D為線段BC上一點,若∠CAD與∠CAB互余.求證:△ABD是“倍角互余三角形”;
【拓展提高】(3)如圖2,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,試問在邊BC上是否存在點E,使得△ABE是“倍角互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
【考點】三角形綜合題.
【答案】15
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:313引用:1難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:181引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當(dāng)點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時,DF∥AC;當(dāng)∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1666引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當(dāng)其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當(dāng)t=秒時,PQ平分線段BD;
(2)當(dāng)t=秒時,PQ⊥x軸;
(3)當(dāng)時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:140引用:3難度:0.1
把好題分享給你的好友吧~~