【情境建模】(1)蘇科版教材八年級(jí)上冊(cè)第60頁,研究了等腰三角形的軸對(duì)稱性,我們知道“等腰三角形底邊上的高線、中線和頂角平分線重合”,簡稱“三線合一”.
小明嘗試著逆向思考:若三角形一個(gè)角的平分線與這個(gè)角對(duì)邊上的高重合,則這個(gè)三角形是等腰三角形.如圖1,已知,點(diǎn)D在△ABC的邊BC上,AD平分∠BAC,且AD⊥BC,求證:AB=AC.請(qǐng)你幫助小明完成證明.
請(qǐng)嘗試直接應(yīng)用“情境建模”中小明反思出的結(jié)論解決下列問題:
【理解內(nèi)化】(2)①如圖2,在△ABC中,AD是角平分線,過點(diǎn)B作AD的垂線交AD、AC于點(diǎn)E、F,∠ABF=2∠C,求證:BE=12(AC-AB).
②如圖3,在四邊形ABDC中,BC=7,AC-AB=2,AD平分∠CAB,AD⊥CD,當(dāng)△BCD的面積最大時(shí),請(qǐng)直接寫出此時(shí)CD的長.
【拓展應(yīng)用】(3)如圖4,△ABC是兩條公路岔路口綠化施工的一塊區(qū)域示意圖,其中∠ACB=90°,AC=15m,BC=20m,該綠化帶中修建了健身步道.OA、OB、OM、ON、MN,其中入口M、N分別在AC、BC上,步道OA、OB分別平分∠BAC和∠ABC,OM⊥OA,ON⊥OB.現(xiàn)要用圍擋完全封閉△CMN區(qū)域,修建地下排水和地上公益廣告等設(shè)施,請(qǐng)直接寫出圍擋的長度.(步道寬度和接頭忽略不計(jì))

BE
=
1
2
(
AC
-
AB
)
BC
=
7
AC
-
AB
=
2
【考點(diǎn)】四邊形綜合題.
【答案】(1)證明見解析;
(2)①證明見解析;
②;
(3)10m.
(2)①證明見解析;
②
3
2
(3)10m.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/12 2:0:2組卷:348引用:1難度:0.5
相似題
-
1.探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
證明:延長CB到G,使BG=DE,連接AG,
∵四邊形ABCD為正方形,
∴AB=AD,∠ABC=∠D=90°,
∴∠ABG=∠D=90°,
∴△ADE≌△ABG.
∴AG=AE,∠1=∠2;
∵四邊形ABCD為正方形,
∴∠BAD=90°,
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠.
又AG=AE,AF=AF,
∴△GAF≌.
∴FG=EF,
∵FG=FB+BG,
又BG=DE,
∴DE+BF=EF.
變化:在圖①中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系 ;
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.12
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說明理由).猜想:∠B與∠D滿足關(guān)系:.12發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1 -
2.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).
(1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為
(2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫出CE的長度.發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1 -
3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
(1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說明理由.
(2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求BE:BF的值.
(3)在(2)的條件下,若正方形ABCD的邊長為(3+3)cm,∠EDC=30°,求△BCF的面積.7發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5