已知雙曲線C:x2a2-y2b2=1(a>0,b>0),設(shè)P是雙曲線C上任意一點,O為坐標(biāo)原點,F(xiàn)為雙曲線右焦點,A1,A2為雙曲線的左右頂點.
(1)已知:無論點P在右支的何處,總有|PO|>|PF|,求ba的取值范圍;
(2)設(shè)過右焦點F的直線l交雙曲線于M,N兩點,若存在直線l,使得△OMN為等邊三角形,求b2a2的值;
(3)若a=2,b=3,動點Q在雙曲線上,且與雙曲線的頂點不重合,直線QA1和直線QA2與直線l:x=1分別相交于點S和T,試問:是否存在定點E,使得ES⊥ET恒成立?若存在,請求出定點E的坐標(biāo);若不存在,試說明理由.
x
2
a
2
-
y
2
b
2
=
1
(
a
>
0
,
b
>
0
)
b
a
b
2
a
2
b
=
3
【考點】直線與圓錐曲線的綜合;雙曲線的幾何特征.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/15 8:0:9組卷:38引用:1難度:0.3
相似題
-
1.點P在以F1,F(xiàn)2為焦點的雙曲線
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O為坐標(biāo)原點.E:x2a2-y2b2=1
(Ⅰ)求雙曲線的離心率e;
(Ⅱ)過點P作直線分別與雙曲線漸近線相交于P1,P2兩點,且,OP1?OP2=-274,求雙曲線E的方程;2PP1+PP2=0
(Ⅲ)若過點Q(m,0)(m為非零常數(shù))的直線l與(2)中雙曲線E相交于不同于雙曲線頂點的兩點M、N,且(λ為非零常數(shù)),問在x軸上是否存在定點G,使MQ=λQN?若存在,求出所有這種定點G的坐標(biāo);若不存在,請說明理由.F1F2⊥(GM-λGN)發(fā)布:2024/12/29 10:0:1組卷:65引用:5難度:0.7 -
2.已知兩個定點坐標(biāo)分別是F1(-3,0),F(xiàn)2(3,0),曲線C上一點任意一點到兩定點的距離之差的絕對值等于2
.5
(1)求曲線C的方程;
(2)過F1(-3,0)引一條傾斜角為45°的直線與曲線C相交于A、B兩點,求△ABF2的面積.發(fā)布:2024/12/29 10:30:1組卷:85引用:1難度:0.9 -
3.若過點(0,-1)的直線l與拋物線y2=2x有且只有一個交點,則這樣的直線有( ?。l.
發(fā)布:2024/12/29 10:30:1組卷:26引用:5難度:0.7