f(x)=|x-a|-lnx(a>0).
(1)若a=1,求f(x)的單調(diào)區(qū)間及f(x)的最小值;
(2)若a>0,求f(x)的單調(diào)區(qū)間;
(3)試比較ln2222+ln3232+…+lnn2n2與(n-1)(2n+1)2(n+1)的大小.(n∈N*且n≥2),并證明你的結(jié)論.
ln
2
2
2
2
ln
3
2
3
2
ln
n
2
n
2
(
n
-
1
)
(
2
n
+
1
)
2
(
n
+
1
)
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:654引用:20難度:0.1
相似題
-
1.已知函數(shù)
,當(dāng)x∈(0,+∞)時,f(x)≥0恒成立,則實數(shù)a的取值范圍是( ?。?/h2>f(x)=e2x-2lnx+ax+1x2發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
2.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實數(shù)a的取值范圍是( )ax?f(ax)lnx≥f(lnx)?lnxax發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0發(fā)布:2024/12/20 6:0:1組卷:262引用:9難度:0.4
把好題分享給你的好友吧~~