如圖,在平面直角坐標(biāo)系中,直線y=-12x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=-12x2+bx+c經(jīng)過A,B兩點(diǎn)且與x軸的負(fù)半軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)若點(diǎn)D為直線AB上方拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)∠ABD=2∠BAC時(shí),求點(diǎn)D的坐標(biāo);
(3)已知E,F(xiàn)分別是直線AB和拋物線上的動(dòng)點(diǎn),當(dāng)以B,O,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出所有符合條件的E點(diǎn)的坐標(biāo).

1
2
1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:4117引用:12難度:0.4
相似題
-
1.已知,在平面直角坐標(biāo)系中,拋物線y=ax2-6ax-4與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線AC的解析式是y=-2x+b.
(1)如圖1,求拋物線的解析式:
(2)如圖2,點(diǎn)P是第四象限拋物線上一點(diǎn),連接PA交y軸于點(diǎn)E,若P橫坐標(biāo)是t,△ACP的面積為S,求S與t的函數(shù)關(guān)系式(不要求寫出t的取值范圍).
(3)如圖3,在(2)的條件下,在第一象限的拋物線上有一點(diǎn)D,D的橫坐標(biāo)是10,連接PD交x軸于點(diǎn)T,P恰好在AT的垂直平分線上,BF⊥x軸交PD于點(diǎn)F,EF交x軸于點(diǎn)G,點(diǎn)H在OA上,HO=BG,R在第四象限的拋物線上,P到直線HR距離為14,求tan∠BHR的值.3102發(fā)布:2025/6/10 11:30:1組卷:95引用:2難度:0.1 -
2.如圖,拋物線y=ax2+(a+3)x+3(a≠0)與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,在x軸上有一動(dòng)點(diǎn)E(m,0)(0<m<4),過點(diǎn)E作x軸的垂線交直線AB于點(diǎn)N,交拋物線于點(diǎn)P,過點(diǎn)P作PM⊥AB于點(diǎn)M.
(1)求a的值及cos∠BAO.
(2)求PN的最大值.
(3)設(shè)△PMN的面積為S1,△AEN的面積為S2,若,求此時(shí)m的值.S1S2=3625發(fā)布:2025/6/10 11:0:1組卷:764引用:2難度:0.1 -
3.在直角坐標(biāo)系中,拋物線
與x軸交于A、B兩點(diǎn).其中點(diǎn)A(-2,0),點(diǎn)B(4,0).y=12x2+bx+c(a≠0)
(1)求拋物線的解析式.
(2)如圖1,在直線經(jīng)過A點(diǎn),與y軸交于D.在直線l下方的拋物線上有一個(gè)動(dòng)點(diǎn)P,連接PA,PD,求△PAD面積的最大值及其此時(shí)P的坐標(biāo).l:y=-12x+n
(3)將拋物線y向右平移1個(gè)單位長度后得到新拋物線y1,點(diǎn)E是新拋物線y1的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)F是原拋物線上的一個(gè)動(dòng)點(diǎn),取△PAD面積最大值時(shí)的P點(diǎn).若以點(diǎn)P、D、E、F為頂點(diǎn)的四邊形是平行四邊形,直接寫出點(diǎn)F的坐標(biāo),并寫出求解其中一個(gè)F點(diǎn)的過程.發(fā)布:2025/6/10 11:0:1組卷:414引用:3難度:0.2