為了探索代數(shù)式x2+1+(8-x)2+25的最小值,
小張巧妙的運(yùn)用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=x2+1,CE=(8-x)2+25則問(wèn)題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時(shí),AC+CE的值最小,于是可求得x2+1+(8-x)2+25的最小值等于 1010,此時(shí)x=4343;
(2)題中“小張巧妙的運(yùn)用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想?
(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)
(3)請(qǐng)你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式x2+4+(12-x)2+9的最小值 1313.
x
2
+
1
+
(
8
-
x
)
2
+
25
x
2
+
1
(
8
-
x
)
2
+
25
x
2
+
1
+
(
8
-
x
)
2
+
25
4
3
4
3
x
2
+
4
+
(
12
-
x
)
2
+
9
【考點(diǎn)】軸對(duì)稱-最短路線問(wèn)題.
【答案】10;;13
4
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 19:0:1組卷:652引用:4難度:0.5
相似題
-
1.在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,則PE和PC的長(zhǎng)度之和最小可達(dá)到
發(fā)布:2025/6/15 18:0:1組卷:161引用:4難度:0.7 -
2.如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為( )
發(fā)布:2025/6/15 19:0:1組卷:486引用:8難度:0.9 -
3.如圖,矩形ABCD中,AB=2,對(duì)角線AC、BD交于點(diǎn)O,∠AOD=120°,E為BD上任意點(diǎn),P為AE中點(diǎn),則PO+PB的最小值為( ?。?/h2>
發(fā)布:2025/6/15 19:30:1組卷:872引用:6難度:0.4